60. On the Example of an Inhomogeneous Partial Differential Equation without Distribution Solutions

By Taira SHIROTA

Osaka University

(Comm. by K. KUNUGI, M.J.A., May 13, 1961)

1. Let Ω be a domain in Euclidean *n*-space and let P be a partial differential operator with constant coefficients.

Here we consider the distribution equation

$$PS = F$$
 (1)

where F is a given distribution in $D'(\Omega)$ and S is the solution in $D'(\Omega)$. It was shown by B. Malgrange [1] that for elliptic operators P and for any domain Ω there is a solution S of (1) and that for hypoelliptic operators P the existence theorem is always valid whenever Ω is a P-convex domain, i.e. to every compact set $K \subset \Omega$ there exists another compact set $K' \subset \Omega$ such that supp $\varphi \subset K'$ for every $\varphi \subset \mathfrak{D}(\Omega)$ such that supp $P'\varphi \subset K$. Furthermore it is easily shown applying usual methods used by several authors that for any geometrically convex domain Ω and for any P the existence theorem is also valid.

In the present note I shall show using a result of \mathbf{F} . John's that for the hyperbolic operator the existence theorem is not true for some P-convex domain.

2. To show a counter example we use the following

Lemma 1. Let Ω_i be a bounded subdomain of a domain $\Omega \subset R_n$ such that

 $\Omega \supset \overline{\Omega}_i \oplus \Omega_{i+1}$ for any integer $i=1, 2, \cdots$, and let K_i be (n-1)-dim surfaces such that

$$K_i \subset \mathcal{Q}_i - \overline{\mathcal{Q}}_{i-1},$$

 $K_i \rightarrow a$ part of the boundary $\dot{\Omega}$ of Ω .

Furthermore we assume that for some increasing sequence $\{s_i\}$ of integers there exist functions f_i such that

 $\operatorname{supp} f_i \subset \Omega_i$

$$f_i \in C^{s_i - 1}(\Omega_i), \tag{3}$$

$$f_i \in C^{\bullet_i}(U(K_i) - K_i), \qquad (4)$$

but for some D^{s_i} ,

$$D^{*i}f_i \notin L_{p_i}(U(K_i))$$
 (\$\infty\$ > \$p_i > 1\$), (5)

where $U(K_i)$ is an open set, and $P'f_i \in C^{s_i - p}(\Omega_i) \frown C^{\infty}(\Omega_i - K)$ (6)

where p is the degree of P and K is a fixed compact subset of Q.

Then there exists a distribution F such that (1) has no distribution solutions for Ω .

(2)

T. SHIROTA

Proof. First of all we show that there exists distribution F_i of order s_i such that supp $F_i \subset$ a small open set $U(K_i)$ and

 $F_{i}(f_{i}^{*}\varphi_{i}) \rightarrow \infty \quad \text{as} \quad \varepsilon \rightarrow 0, \qquad (7)$ where φ_{i} is a C^{∞} -function such that $\varphi_{i}(x) = \varepsilon^{-n}\varphi(\varepsilon^{-1}x), \quad \varphi(x) \ge 0$, supp $\varphi \subset \{x \mid |x| < 1\}$ and $\int \varphi(x) dx = 1$.

For if we assume that for any $g \in L_{p_i}(U(K_i))$

$$\left|\int_{U(K_i)} g(x) (D^{s_i}(f_i^*\varphi_i))(x) dx\right| < \alpha$$

for any ε and for some α . Then $\{D^{s_i}(f_i^*\varphi_i) | \varepsilon \to 0\}$ is bounded in $L_{p_i}(U(K_i))$. Since L_{p_i} is reflexive, there exists a subsequence of the sequence such that it converges weakly to some ϕ in $L_{p_i}(U(K_i))$. Then we see from (4) that $\phi(x) = D^{s_i}f_i$ for a.e. $x \in U(K_i) - K_i$ and therefore that $D^{s_i}f_i \in L_{p_i}(U(K_i))$ which contradicts (4) and (5).

Setting $F_i = (D^{\prime_{e_i}})g$ for some $g \in L_{p_i}(U(K_i))$, we see the relation (7). Let $F = F_1 + F_2 + \cdots$. Then from the properties of K_i , we see that $F \in \mathfrak{D}'(Q)$.

Now we assume that there exists a distribution $S \in \mathfrak{D}'(\Omega)$ such that PS = F. Then $S(P'\varphi) = F(\varphi)$ for any $\varphi \in \mathfrak{D}(\Omega)$. Therefore for some neighbourhood N of 0 in $\mathfrak{D}(\Omega)$, if $P'\varphi \in N$, then

$$|F(\varphi)| \leq 1.$$

On the other hand from (6) it follows that there exist a k and δ_k such that

$$P'(\delta_k f_k^* \varphi_{\epsilon}) = \delta_k (P' f_k)^* \varphi_{\epsilon} \in N \qquad (\varepsilon \leq \varepsilon_k)$$

Furthermore from (2) and (3) it follows that for some $\beta > 0$, $|(F_1+F_2+\cdots+F_{k-1})(\delta_k f_k^* \varphi_i)| < \beta$ for $\varepsilon \to 0$

and from (7) that for some ε_k

$$F_k(\delta_k f_k^* \varphi_{\varepsilon_k})| \geq 2+\beta.$$

Therefore we see that for some ε_k $|F(\delta_k f_k^* \varphi_{\varepsilon_k})| \ge 2,$

which is a contradiction.

Lemma 2. Let
$$P = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2}$$
 and $x = (x_1, x_2)$. Then for

any integer m > 0 there exists solution g_m such that

$$Pg_m = 0 \text{ in } R_3, \tag{8}$$

$$g_m$$
 is analytic for $r=\sqrt{(x_1^2+x_2^2)}<1$, (9)

 $g_m(t,x) \in C^m \tag{10}$

$$g_m(t, x) \in C^{m+1}$$
 for $r > 1$, (11)

and for some D^{m+1} , $|D^{m+1}g_m(0, x_i)| \to \infty$ for some sequence $x_i(|x_i| \neq 1)$ where x_i converges to a point x which lies in an arbitrary small neighbourhood of (0, 1, 0).

This lemma is proved by F. John [2].

3. Counter example. Let Ω_0 be the cylinder $\subset \mathbb{R}^3$ such that (t, x)

 $\in \Omega_0$ if and only if |t| < 1 and r > 3 and let Ω_1 be the barrel such that $(t, x) \in \Omega_1$ if and only if $r \leq \varphi(t)$ $(|t| \leq 1)$ where $\varphi(t)$ is a C^{∞} -function such that

$$\varphi(t) = 2^{-1}$$
 for $t = +1, -1$
 $\varphi(0) = 1 - \delta$ $(0 < \delta < 2^{-1})$

and $\varphi'(t) > 0$ for t < 0 and $\varphi'(t) < 0$ for t > 0. Let $\mathcal{Q} = \mathcal{Q}_0 - \mathcal{Q}_1$, then by the Holmgrem's theorem we see that \mathcal{Q} is a *P*-convex domain where $P = \frac{\partial^2}{\partial t^2} - \mathcal{A}_x$.

Now from Lemma 2 we show that there exist subdomains Ω_i , surfaces K_i , numbers s_i and functions f_i such that they satisfy the conditions of Lemma 1. Let Ω'_m be the cylinder $\{(t,x) \mid |t| < 3 \cdot 2^{-1}, 1-2^{-(2m+1)}\delta < r < 5 \cdot 2^{-1}\}$. Furthermore let $\Omega_m = \Omega'_m - (1-2^{-2m}) \delta \cdot e$ where e = (0, 1, 0).

Moreover let $p_m(t,x)$ and q(t,x) be C^{∞} -functions such that $p_m(t,x)=1$ for $r:1-2^{-(2m+3)}\delta \leq r \leq 3 \cdot 2^{-1}$, $p_m(t,x)=0$ for $r:r \leq 1-2^{-(2m+2)}\delta$ or $r \geq 2$, q(t,x)=1 for $|t| \leq 3^{-1}$ and q(t,x)=0 for $|t|>2^{-1}$. Finally let $g'_m = g_m \cdot p_m \cdot q$ and let $f_m = g'_m(t,x+\delta(1-2^{-2m})e)$.

Then since $\operatorname{supp} g'_m \subset Q'_m$, $\operatorname{supp} f_m \subset Q_m$ ((2)). From (10) it follows that $f_m \in C^m(Q_m)$ ((3)). Let K'_m be a subset of $\{(t, x) \mid |x|=1\}$ which converges to (0, 1, 0) and let $K_m = K'_m - \delta(1-2^{-2m})e$. Then from (9) and (11) it follows that $f_m \in C^{m+1}(U(K_m) - K_m)$ ((4)). Furthermore from (10) and the property of $D^{m+1}g_m$ mentioned above, it implies that $D^{m+1}f_m$ $\notin L^{p_m}(U(K_m))$ for some p_m ((5)). Finally from (8), (9) and (11) we see that $P'f_m \in C^{m+1}(Q_m) \cap C^{\infty}(Q_m - K)$, ((6)), where $K = \{(t, x) \mid 3^{-1} \leq |t| \leq 2^{-1}, 1-\delta \leq r \leq 2+\delta\}\{(t, x) \mid |t| \leq 3^{-1}, 3 \cdot 2^{-1} - \delta \leq r \leq 2+\delta\}.$

4. Remark. Conversely, from the existence theorem for geometrically convex domain and Lemma 1 it follows directly the John-Malgrange theorem [2].

References

- B. Malgrange: Séminaire Schwartz, (Equations aux dérivées partial année 1954/ 55).
- [2] F. John: Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure and Apple. Math., 13, 551-585 (1960).