60. On the Example of an Inhomogeneous Partial Differential Equation without Distribution Solutions

By Taira Shirota
Osaka University
(Comm. by K. Kunugi, m.J.A., May 13, 1961)

1. Let Ω be a domain in Euclidean n-space and let P be a partial differential operator with constant coefficients.

Here we consider the distribution equation

$$
\begin{equation*}
P S=F \tag{1}
\end{equation*}
$$

where F is a given distribution in $D^{\prime}(\Omega)$ and S is the solution in $D^{\prime}(\Omega)$. It was shown by B. Malgrange [1] that for elliptic operators P and for any domain Ω there is a solution S of (1) and that for hypoelliptic operators P the existence theorem is always valid whenever Ω is a P-convex domain, i.e. to every compact set $K \subset \Omega$ there exists another compact set $K^{\prime} \subset \Omega$ such that supp $\varphi \subset K^{\prime}$ for every $\varphi \subset \mathfrak{D}(\Omega)$ such that supp $P^{\prime} \varphi \subset K$. Furthermore it is easily shown applying usual methods used by several authors that for any geometrically convex domain Ω and for any P the existence theorem is also valid.

In the present note I shall show using a result of F. John's that for the hyperbolic operator the existence theorem is not true for some P-convex domain.

2. To show a counter example we use the following

Lemma 1. Let Ω_{i} be a bounded subdomain of a domain $\Omega \subset R_{n}$ such that

$$
\Omega \supset \bar{\Omega}_{i} \perp \Omega_{i+1} \quad \text { for any integer } i=1,2, \cdots,
$$

and let K_{i} be ($n-1$)-dim surfaces such that

$$
\begin{aligned}
& K_{i} \subset \Omega_{i}-\bar{\Omega}_{i-1}, \\
& K_{i} \rightarrow \text { a part of the boundary } \dot{\Omega} \text { of } \Omega .
\end{aligned}
$$

Furthermore we assume that for some increasing sequence $\left\{s_{i}\right\}$ of integers there exist functions f_{i} such that

$$
\begin{align*}
& \text { supp } f_{i} \subset \Omega_{i} \tag{2}\\
& f_{i} \in C^{s_{i}-1}\left(\Omega_{i}\right), \tag{3}\\
& f_{i} \in C^{s_{i}}\left(U\left(K_{i}\right)-K_{i}\right), \tag{4}
\end{align*}
$$

but for some $D^{s i}$,

$$
\begin{equation*}
D^{s_{i}} f_{i} \notin L_{p_{i}}\left(U\left(K_{i}\right)\right) \quad\left(\infty>p_{i}>1\right) \tag{5}
\end{equation*}
$$

where $U\left(K_{i}\right)$ is an open set, and

$$
\begin{equation*}
P^{\prime} f_{i} \in C^{s_{i}-p}\left(\Omega_{i}\right) \frown C^{\infty}\left(\Omega_{i}-K\right) \tag{6}
\end{equation*}
$$

where p is the degree of P and K is a fixed compact subset of Ω.
Then there exists a distribution F such that (1) has no distribution solutions for Ω.

Proof. First of all we show that there exists distribution F_{i} of order s_{i} such that $\operatorname{supp} F_{i} \subset$ a small open set $U\left(K_{i}\right)$ and

$$
\begin{equation*}
F_{i}\left(f_{i}^{*} \varphi_{s}\right) \rightarrow \infty \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{7}
\end{equation*}
$$

where φ_{c} is a C^{∞}-function such that $\varphi_{t}(x)=\varepsilon^{-n} \varphi\left(\varepsilon^{-1} x\right), \varphi(x) \geqq 0, \operatorname{supp} \varphi$ $\subset\left\{x||x|<1\}\right.$ and $\int \varphi(x) d x=1$.

For if we assume that for any $g \in L_{p_{i}}\left(U\left(K_{i}\right)\right)$

$$
\left|\int_{\boldsymbol{D}\left(\mathbb{K}_{i}\right)} g(x)\left(D^{s_{i}}\left(f_{i}^{*} \varphi_{c}\right)\right)(x) d x\right|<\alpha
$$

for any ε and for some α. Then $\left\{D^{s_{i}}\left(f_{i}^{*} \varphi_{i}\right) \mid \varepsilon \rightarrow 0\right\}$ is bounded in $L_{p_{i}}$ $\left(U\left(K_{i}\right)\right)$. Since $L_{p_{i}}$ is reflexive, there exists a subsequence of the sequence such that it converges weakly to some ϕ in $L_{p_{i}}\left(U\left(K_{i}\right)\right)$. Then we see from (4) that $\phi(x)=D^{s} f_{i}$ for a.e. $x \in U\left(K_{i}\right)-K_{i}$ and therefore that $D^{s_{i}} f_{i} \in L_{p_{i}}\left(U\left(K_{i}\right)\right)$ which contradicts (4) and (5).

Setting $F_{i}=\left(D^{\prime s_{i}}\right) g$ for some $g \in L_{p_{i}}\left(U\left(K_{i}\right)\right)$, we see the relation (7).
Let $F=F_{1}+F_{2}+\cdots$. Then from the properties of K_{i}, we see that $F \in \mathfrak{D}^{\prime}(\Omega)$.

Now we assume that there exists a distribution $S \in \mathfrak{D}^{\prime}(\Omega)$ such that $P S=F$. Then $S\left(P^{\prime} \varphi\right)=F(\varphi)$ for any $\varphi \in \mathfrak{D}(\Omega)$. Therefore for some neighbourhood N of 0 in $\mathfrak{D}(\Omega)$, if $P^{\prime} \varphi \in N$, then

$$
|F(\varphi)| \leqq 1
$$

On the other hand from (6) it follows that there exist a k and δ_{k} such that

$$
P^{\prime}\left(\delta_{k} f_{k}^{*} \varphi_{t}\right)=\delta_{k}\left(P^{\prime} f_{k}\right)^{*} \varphi_{t} \in N \quad\left(\varepsilon \leqq \varepsilon_{k}\right) .
$$

Furthermore from (2) and (3) it follows that for some $\beta>0$,

$$
\left|\left(F_{1}+F_{2}+\cdots+F_{k-1}\right)\left(\delta_{k} f_{k}^{*} \varphi_{c}\right)\right|<\beta \text { for } \varepsilon \rightarrow 0
$$

and from (7) that for some ε_{k}

$$
\left|F_{k}\left(\delta_{k} f_{k}^{*} \varphi_{\varepsilon_{k}}\right)\right| \geqq 2+\beta
$$

Therefore we see that for some ε_{k}

$$
\left|F\left(\delta_{k} f_{k}^{*} \varphi_{\varepsilon_{k}}\right)\right| \geqq 2,
$$

which is a contradiction.
Lemma 2. Let $P=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}$ and $x=\left(x_{1}, x_{2}\right)$. Then for any integer $m>0$ there exists solution g_{m} such that

$$
\begin{align*}
& P g_{m}=0 \text { in } R_{3}, \tag{8}\\
& g_{m} \text { is analytic for } r=\sqrt{\left(x_{1}^{2}+x_{2}^{2}\right)}<1, \tag{9}\\
& g_{m}(t, x) \in C^{m} \tag{10}\\
& g_{m}(t, x) \in C^{m+1} \quad \text { for } \quad r>1, \tag{11}
\end{align*}
$$

and for some $D^{m+1},\left|D^{m+1} g_{m}\left(0, x_{i}\right)\right| \rightarrow \infty$ for some sequence $x_{i}\left(\left|x_{i}\right| \neq 1\right)$ where x_{i} converges to a point x which lies in an arbitrary small neighbourhood of ($0,1,0$).
This lemma is proved by F. John [2].
3. Counter example. Let Ω_{0} be the cylinder $\subset R^{8}$ such that (t, x)
$\epsilon \Omega_{0}$ if and only if $|t|<1$ and $r>3$ and let Ω_{1} be the barrel such that $(t, x) \in \Omega_{1}$ if and only if $r \leqq \varphi(t)(|t| \leqq 1)$ where $\varphi(t)$ is a C^{∞}-function such that

$$
\begin{array}{ll}
\varphi(t)=2^{-1} \quad \text { for } \quad t=+1,-1 \\
\varphi(0)=1-\delta \quad\left(0<\delta<2^{-1}\right)
\end{array}
$$

and $\varphi^{\prime}(t)>0$ for $t<0$ and $\varphi^{\prime}(t)<0$ for $t>0$. Let $\Omega=\Omega_{0}-\Omega_{1}$, then by the Holmgrem's theorem we see that Ω is a P-convex domain where $P=\frac{\partial^{2}}{\partial t^{2}}-\Delta_{x}$.

Now from Lemma 2 we show that there exist subdomains Ω_{i}, surfaces K_{i}, numbers s_{i} and functions f_{i} such that they satisfy the conditions of Lemma 1 . Let Ω_{m}^{\prime} be the cylinder $\left\{(t, x)\left||t|<3 \cdot 2^{-1}\right.\right.$, $\left.1-2^{-(2 m+1)} \delta<r<5 \cdot 2^{-1}\right\}$. Furthermore let $\Omega_{m}=\Omega_{m}^{\prime}-\left(1-2^{-2 m}\right) \delta \cdot e$ where $e=(0,1,0)$.

Moreover let $p_{m}(t, x)$ and $q(t, x)$ be C^{∞}-functions such that $p_{m}(t, x)=1$ for $r: 1-2^{-(2 m+3)} \delta \leqq r \leqq 3 \cdot 2^{-1}, p_{m}(t, x)=0$ for $r: r \leqq 1-2^{-(2 m+2)} \delta$ or $r \geqq 2$, $q(t, x)=1$ for $|t| \leqq 3^{-1}$ and $q(t, x)=0$ for $|t|>2^{-1}$. Finally let $g_{m}^{\prime}=g_{m} \cdot p_{m} \cdot q$ and let $f_{m}=g_{m}^{\prime}\left(t, x+\delta\left(1-2^{-2 m}\right) e\right)$.

Then since supp $g_{m}^{\prime} \subset \Omega_{m}^{\prime}, \operatorname{supp} f_{m} \subset \Omega_{m}((2))$. From (10) it follows that $f_{m} \in C^{m}\left(\Omega_{m}\right)((3))$. Let K_{m}^{\prime} be a subset of $\{(t, x)||x|=1\}$ which converges to ($0,1,0$) and let $K_{m}=K_{m}^{\prime}-\delta\left(1-2^{-2 m}\right) e$. Then from (9) and (11) it follows that $f_{m} \in C^{m+1}\left(U\left(K_{m}\right)-K_{m}\right)$ ((4)). Furthermore from (10) and the property of $D^{m+1} g_{m}$ mentioned above, it implies that $D^{m+1} f_{m}$ $\notin L^{p_{m}}\left(U\left(K_{m}\right)\right)$ for some $p_{m}((5))$. Finally from (8), (9) and (11) we see that $P^{\prime} f_{m} \in C^{m+1}\left(\Omega_{m}\right) \frown C^{\infty}\left(\Omega_{m}-K\right)$, ($\left.(6)\right)$, where $K=\left\{(t, x)\left|3^{-1} \leqq|t| \leqq 2^{-1}\right.\right.$, $1-\delta \leqq r \leqq 2+\delta\}\left\{(t, x)\left||t| \leqq 3^{-1}, 3 \cdot 2^{-1}-\delta \leqq r \leqq 2+\delta\right\}\right.$.
4. Remark. Conversely, from the existence theorem for geometrically convex domain and Lemma 1 it follows directly the JohnMalgrange theorem [2].

References

[1] B. Malgrange: Séminaire Schwartz, (Equations aux dérivées partial année 1954/ 55).
[2] F. John: Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure and Apple. Math., 13, 551-585 (1960).

