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Osaka University of Liberal Arts and Education

(Comm. by K. KUN-tYGI, M.J.A., May 13, 1961)

Let X and Y be topological spaces and let f be a continuous
mapping of X onto Y. f is said to be open if the image of every
open subset of X is open in Y. A. H. Stone 9] has obtained condi-
tions under which the image of an open continuous mapping of a
metric space becomes metrizable. In this note, we shall obtain some
results concerning the images of the open continuous mappings of
metric spaces.

1. By the open image, we mean the image of an open continu-
ous mapping. We begin with proving the following theorem.

Theorem 1. If X is a T-space which satisfies the first count-
ability axiom, then X is an open image of a metric space.

Proof. Let [U. la2] be the open basis of X. For each point
x of X, let [ U.I i-- 1, 2, a2] be an open neighborhood basis
of x, then a----(a, a2, .)N(9), where N(2) is the generalized Baire’s
zero-dimensional space*) introduced by K. Morita 4J. Now let A
denote the set of all such a. If we define a mapping f of A into
X by f(a)-x, then it is evident that f(A)--X. We shall next prove
that f is an open continuous mapping. Let V be any open neighbor-
hood of x such that f(a)--x, then, since {U.li--1, 2,--.} is an open
neighborhood basis of x, there exists a U. such that U.V. Then

if p(a, fl)<:--I where fl--(fl, f12, "")A, then a,--fl, for ik by the
k

definition of the metric of N(2). Hence f(fl)eU.U.V. There-
fore f is continuous.

1) { 1} ( (1))Now let Va;- fl]p(a, fl)<- then f V a; --IU,"

((.1)) ’ (In fact, since f V a ,- cIUai it is sufficient to show that f V

a - 1U.. For this purpose, let y e U. and let {U J-- k+ 1,

k+2,.-. } be an open neighborhood basis which is obtained by number-

*) We define the metric p of N(/2)={(1, 2,---) +9, i=1, 2,---} as follows: if
1a=(l, 2,---), B=(B1, B2,---), =& for i<n, n=Bn, then (, B)=--. As is well known,

N(9) is a 0-dimensional metric space and we call N() a generalized Baire’s zero-
dimensional space according to K. Morita.
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ing from k+ 1. Then { U, U,- ., U, U+,..-} is an open neighbor-
hood basis of y. Hencef(a’)--y where a’--(a,-.-,a, fi+,...). There-

((1))fore we get f V ; U. On the other hand, since V

eA, k--l,,.., is the basis for on sets

maing. his eomletes the roof.
he followin theorem is an immediate eonseenee f heorem 1.

Theorem 2. A T-spe X i an open image of a metric space

if and only if X satisfies the first countility axiom.
Theorem 3. A regular spe X is an open image of a locally

separle metric space if and only X is locally separle and
locally metrizle,

Proof. Let f(T)=X an on continuous mapping where T is
a lally parable metric space. Let U be an on separable
neighborhood of any int of T, then, since f is on, f(U) is an
on set in X and a regular space with a countable basis for on
sets as a subspace of X. Hence f(U) is separable and metrizable as
a subspace of X. Thus X is locally separable and locally metrizable.

Conversely, if X is locally separable and locally metrizable, then,
for each point of X, there exists an on neighrhood U()which
is separable and metrizable. Let V a to,logical space such that
V is homeomorphic to U(z) and VV= for any distinct points
z and z’ of X, then T= V is a locally separable metric space where

X

the topology of T is defined as follows: for each int t of T such
that t e V, the on neighrhood basis of t is the open neighr-
hood basis of t of the space V. Let the ave homeomorph-
ism tween U(z) and V and let f(t)=(t) if t e V. Then it is easy
to see that f is an on continuous mapping of T onto X. This com-
pletes the proof.

By Theorem 3, we easily obtain the following theorem.
Theorem 4. Let X be a locally separle metric space and let

Y be a regular spe. If f(X)= Y is an open continuo mapping,
then Y is metrizable if and only if Y is parompt.

Rerk 1. In Theorem 4, we assumed that X is locally separa-
ble. We can not drop this assumption since we can get an encoun-
ter example as follows. Let R a t of real numrs. For each
z e R, we define an on neighrhood basis { U(x) x< u, u eR} where
U(z)={y[zy<u}. Then R is a paracompact Hausdorff space satis-
fying the first countability axiom, but R is not metrizable. By
Theorem 1, R is an on image of a metric space.

Rek 2. By E. Michael’s theorem [2, Cot. 1.4], we can prove
the following theorem: let X be a complete metric spe and let Y
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be a zero-dimensional paracompact Tl-space. If Y is an open image
of X, then Y is metrizable.

In conclusion of this section, we shall prove the following theo-
rem. Before the proof, we give a definition. Let f(X)--Y be a
continuous mapping. If f-(y) is compact for each point y of Y, then
Y is said to be a compact image.

Theorem 5. A Hausdorff space X is an open comTact image

of a metric space if and only if there exists a countable family
of point-finite open coverings of X such that {S(x, ,)} i--1, 2-.. } is
a neighborhood basis of x for each point x of X.

Proof. Necessity. Let f(T)--X be an open continuous mapping
of a metric space T onto X such that f-(x) is compact for each
X. Let (,={G} be a locally finite open covering of T such that

the diameter of G" is less than 1 for each G’e(,. Then .--f((,)

{f(G’)]G’ (,} is a point-finite open covering of X because f is open
and f-(x) is compact for each xeX. Let V be any open neighbor-
hood of , then f-’(x)Cf-’(V). Since f-’(x) is compact, p[f-(x), T
--f-(V)]:>0 where p denotes the metric of T. If we find a positive

integer m such that p[f-’(x), T--f-’(V)J > __1, then S(f-’(x),)

Cf-(V). Hence S(x, $)V.

Su2ciency. Let $,={VJlaeF,} (i--1, 2,...) and let P=IIF, that

is, P is the product of the sets F. Let T be the set of elements

(a, a.,.--) of P such that V, is a single point of X. Now we

define a mapping f as follows: f(a, a2,"’)----=V:. Then it is easy

to see that f(T)=X. If we consider T as the subspace of the gen-
eralized Baire’s zero-dimensional space, then T is a metric space. We
shall next prove that f is an open continuous mapping. To show
this, let V be any open neighborhood of x, there exists a k such that

S(, )CV. If we take an open neighborhood V a {(1, 2,"’)

[,=a,,i=l, 2,...,k} of a=(ax, a2,’"), we get zef V a;
S)V. Hence f is continuous. We have also f V a

(( 1)). ((In fact, since f V a;-- =V:’,, we need only show that f V a;

=V:’. Let be any point of V:., then there exists an l

such that S(x,)C___V: and l>k. Then there exists a =(a,...,
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a, ’/, ’/., -) such that x V.

V(a; ). Therefore f(V(a; ))V,.. On the other hand, since

{(Va,-1)lk-12,..-, ,aT} is abasis for open setsofT, fisopen.

Finally we prove that f-(x) is compact for each point z of X. Let
A be the set of a such that xe V:, then, by the assumption, A is

a finite set. Hence f-(z)--II is compact. This completes the proof.
i=l

2. In the first place, we shall give an another proof of the
following well-known theorem due to A. H. Stone [9].

Theorem 6 (A. H. Stone). If f is an open continuous map-
ping of a metric, locally separable space X onto a ’egular space Y,
and if for each point y of Y the set f-(y) is separable, then Y is
metrizable and locally separable.

Proof. Let U be an open separable subset of X, then f(U) is
separable and metrizable since Y is a regular space.

Now let --{H} be any open covering of Y, then f-
lieD} is an open covering of X. Since X is a metric space and
locally separable, X has the star-finite property [3, Cor. 2, p. 67].
Hence there exists a star-finite open refinement -{G} of f-(29)
such that each G is separable. Then f(()--[f(G)i Ge} is a star-
countable open refinement of Y) since f(G)f(G’) if and only if G
f-(f(G’))- and f-(f(G)) is separable. Thus we can see that Y
is a regular space with the star-countable property. Therefore Y
has the star-finite property [8. Hence Y is paracompact. Thus we
get the theorem by use of Theorem 4, completing the proof.

Theorem 7. If a collectionwise normal space Y s an open
compact image of a metric space, then Y is metrizable.

Proof. Let X be a metric space and let f(X)--Y be an open
continuous mapping such that f-(y) is compact for each point y of
Y. Let . denote the locally finite open covering of X defined in
the proof of Theorem 5. Then f(,)={f(G’)lG’e,} is a point-finite
open covering of Y. Since Y is collectionwise normal, by E. Michael’s
theorem [1] f(() has a locally finite open refinement $p,={H}. Let
y be any point of Y and let V be any open neighborhood of y. Then,
since f-(y) is compact, p[f-(y), X--f-(V)]>O where p is the metric
of X. Hence there exists a positive integer m such that p[f-(y),

X_f_(V)>__.I Then S(f-a(y), ,)f-(Y). Hence S(y,f(,))V.
m

Therefore we get S(y,O)S(y,f(,))V. By Nagata-Smirnov’s
theorem [6, 7], Y is metrizable. This completes the proof.

Remark 3. i) If we drop the condition that f-(y) is compact
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for each point y of Y, Theorem 7 does not hold. We can see this
by the example given by A. H. Stone [-9, Example (1).

ii) In Theorem 7, we can not replace the collectionwise nor-
mality of Y by the regularity. This is also seen by A. H. Stone
9, Example (3).

Theorem 8. Le X be a paracompact topological space and let
Y be a collectionwise normal space. If f(X)- Y s an open continu-
ous mapping such that he boundary f-(y) is compact for each
point y of Y, hen Y is paracompact.

Proof. Let Y0--{y lint f-(y)}, then by the openness of f,
f(Int f-(Yo))’-Yo is open for each point Y0 of Y. Therefore Y0 is a
discrete open subspace and Y--Yo is closed. Let Xo--ff(Yo), then
X--Xo is a closed inverse set and paracompact as the subspace of X.
Let fo denote the mapping f of X--Xo onto Y--Yo, then fo is open
and continuous. Since Int f-(y)= for each point y of Y--Yo, we
get 3f-(y)-f-’(y). Then we can see that f(y)----f(y)--f-(y),
that is, the boundary of f-l(y) in the subspace X--Xo coincides with
the compact set f-(y). We shall next prove the paracompactness
of the subspace Y-Y0. Let O-{H} be any open covering of Y-Y0-
Then we have the open covering f-(O)-{f(H) HeO} of X--Xo.
Since X--Xo is paracompact, there exists a locally finite open refine-
ment (-- {G} of f-(Yp). Then f()-- {f(G) Ge(} is a point-finite open
covering of Y--Y0 because f is open and f;(y) is compact for each
point y of Y--Y0. On the other hand, Y--Y0 is collectionwise normal
by the closedness of Y--Y0. Therefore, by E. Michael’s theorem
f(() has a locally finite open refinement. Hence Y--Y is paracom-
pact. Therefore, by K. Morita’s lemma [5, Lemma 1], Y is paracom-
pact. This completes the proof.

Theorem 9. Let X be a locally countably compact paracompact
topological space and let Y be a Hausdorff space satisfying the first
countability axiom. If f(X)= Y is an open continuous mapping such
that the inverse image of any countably compact set of Y under f
is compact, then Y is paracompact.

Proof. Let (={G} be an open covering of Y, then (’--{f-(G)
G,e(} is an open covering of X. Since X is paracompact, (’ has a

locally finite open refinement 9-- {R}. Then 9’-- {f(R) Re9} is an
open refinement of (. It is easy to see that 9’ is point-finite since
f-(y) is compact for each point y of Y by the assumption.

Now we shall prove that 9’ is locally finite. For this purpose,
we suppose on the contrary that ’ is not locally finite. On the
other hand, since X is locally countably compact, Y is also locally
countably compact. Then there exist a point Yo and a countably com-
pact neighborhood U(yo)of Y0 such that U(yo) intersects infinitely
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many sets of 9’. Let y be a point of U(y0), then y is contained in
only a finite number of sets f(R). We denote by 9’(yl) the family
of all such sets f(R). We can find a point Y2 of U(Y0) such that
’(/1)/’’(y2)-- since U(y0) intersects infinitely many sets of 9’ and
9’ is point-finite. In the same way, we can find a point Ys of U(yo)
such that (y)(9(y)9(y))=. By induction, we get a sequence
{y,} of points of U(yo) such that ’(y,).9’(y=)= for nm. Since
U(yo) is countably compact and Y satisfies the first countability axiom,
we may assume that {y} converges to a point y of U(yo). Since Y
is a Hausdorff space, the set {y}{y} is countably compact. Hence
the set ( f-(y))f-(y) intersects only a finite number of sets of

9. Thus we get a contradiction, completing the proof.

E].I

[7]

[9]
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