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75. On the Blackwell Theorem in Operator Algebras

By Masahiro NAKAMURAY and Hisaharu UMEGAKI®
(Comm. by K. KUNUGI, M.J.A., June 12, 1961)

1. D. Blackwell [1] established, among others, the following
theorem: If f,,f:---,f. are integrable with respect to a non-atomic
probability measure u on a measurable space (X, ), then there is a
stgma-subfield B on which w is non-atomic and

(1) f F(x) du(zx)=u(D) f fx) du), i=1,2,---,m,

for every De®B. It is important in the theory of statistics that the
theorem of Blackwell implies the well-known Lyapnov convexity
theorem on the ranges of vector measures.”

Since the theory of von Neumann algebras of finite type is
recognized as a non-commutative extension of the probability theory,?
and since (1) is equivalent to
(2) E[f,;I%]:E[f;], i=1729°"’n9
where E[g|®8] (respectively E[g]) is the conditional expectation of
g conditioned by B (respectively the expectation of g), it may be
observed with some interests that the Blackwell theorem has a non-
commutative extension with the same words in the following

THEOREM. If A is a continuous finite von Neumann algebra
with a faithful normal trace =, and if a, a, ---,a, are hermitean
elements of A with

(3) r(a,.)=0, i=19 2’"'9"’9
then there is a continuous subalgebra B such as
(4) ale'_—O’ ’i=1929""n9

where a¢ is the conditional expectation of a conditioned by B in
the sense of [5].

If A is abelian, the theorem becomes the theorem of Blackwell
in the above. Moreover, the proof of the theorem can be carried
out in the same method of Blackwell with a few minor modifications,
as will be seen in the below.

1) Osaka Gakugei Daigaku.

2) Tokyo Institute of Technology.

3) Lyapnov’s theorem and the allied topics are discussed in a recent exposition
[8] of Dubins and Spanier, where Lyapnov’s theorem is given a proof without appeal-
ing the theorem of Blackwell.

4) The terminology of J. Dixmier [2] will be used without any explanation. A
list of non-commutative generalizations of theorems on additive set functions will be
found in [4].
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2. As Blackwell did, the proof of the theorem is reduced to the
following simplest case:

LEMMA 1. For A stated in the theorem, if a 18 an hermitean
element of A with =(a)=0, then there is a continuous subalgebra B
satisfying
(4" a®=0.

It will be shown at first that Lemma 1 implies the theorem.
By Lemma 1, for the given A and a=a,, there is a continuous sub-
algebra B, satisfying (4’). For B, and E[a,|B,],” Lemma 1 also
guarantees that a continuous subalgebra B, satisfies E[E[a,|B,]|B,]
=0. Since B, is a subalgebra of B,, a property of the conditional
expectation implies

Ela,|B,]=E[E[a,| B,]| B,]=0,
as required. Inductively, there is a sequence of subalgebras B,=B,
=-..-=B,, and B=B, has the required properties by the construc-
tion, which proves the theorem.

To prove Lemma 1, it requires that the following variant of the
Bisection Theorem holds for finite von Neumann algebras:

LEMMA 2. If A is continuous finite, if a 18 an hermitean
operator of A satisfying w(a)=0, and if e i3 a projection of A with
(ae)=0, then there is a projection p=<e such that

(5) 7(ap)=0,
and
(6) o(p)= %z-(e).

It will be shown here that Lemma 2 implies Lemma 1. Putting
e=1, Lemma 2 insures that there is a pair of projections p, and p,
satisfying (5) such that p,+p,=1 and =(p,)=r(p.)=%. Again, put-
ting e=p, (for 1=1, 2), there is a set of mutually orthogonal projec-
tions p;, Dss, Dy, and p,, satisfying (5) and z(p,)=% for j=1, 2,3, 4.
Inductively, one has sets of mutually orthogonal projections {p,,|1
=<j=2%} for i=1,2,.-- satisfying (5) and =(p,;)=(3)* (for 1=<5<2%). If
C, is the von Neumann subalgebra generated by {p,,|1=<5<2"}, then
C,=C,<-.-- . It is obvious that C, satisfies E[a|C,]=0 since every
projection of C, satisfies (5). Let C. be the von Neumann subalgebra
generated by {C,}, then
(7) {E[a|C,]|n=1,2,---, o}
is a martingale in the sense of [6]. Since E[a|C,]=0 for n=1,2,---
and since (7) is a simple martingale, E[a|C,]=0 by the martingale

5) For printing convenience, the notation of probabilists is used here. For prop-
erties of the conditional expectation, ef. [5] and [6].
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theorem.® Putting B=C., B becomes the subalgebra satisfying the
required properties of the lemma, since it is obvious by the construc-
tion that B is non-atomiec.

REMARK 1. It will be shown here that B can be chosen maximal
among such subalgebras in Lemma 1. Let @ be the collection of all
continuous von Neumann subalgebras satisfying (4'). Then @ is a
non-void inductively ordered set by inclusion according to Lemma 2.
Hence, there is a maximal continuous von Neumann subalgebra which
satisfies (4').

REMARK 2. It is also possible to require, with a few modifica-
tions in the above proof, that the von Neumann subalgebra B is
contained in the commutor (a) of a, i.e. each element of B commutes
with a.

3. It remains to show that the usual Bisection Theorem for
measure spaces implies the general Lemma 2.” Let B be an abelian
von Neumann subalgebra containing the given e. Then B can be
thought of the multiplication algebra on the spectrum Q of B with
the measure z. If s(x)=r(ax), then ¢ defines a measure on Q which
is absolutely continuous with respect to . Hence the usual Bisection
Theorem implies the existence of a projection p which satisfies the
requirements of Lemma 2.

4. In the remainder, it will be shown briefly that Lemma 1 has
an another proof without appealing Lemma 2.

At first, using the Jordan decomposition a=a’—a”, one can define
two positive linear functionals o'(z)=t(a’zr) and p”(z)=r(a’’z) with
their supports ¢’ and e’ respectively. Under these definitions, it is
not hard to see that the following fact holds: For any mon-zero
projection p'<e, there is a nonm-zero projection p” <e” such as p'(p’)
=p"(p"). Hence, putting p=p'+p”, there is a projection p such
that p satisfies (5) and 0<p<1.

Let ¥ be the collection of all von Neumann subalgebras satisfying
(4). Then ¥ is an inductively ordered set by inclusion and non-void
by the above fact. Hence there is a maximal von Neumann subal-
gebra C in ¥. It is sufficient to show that C is continuous.

If C contains an atom p, then the above argument also guaran-
tees that there is a non-zero projection g<p such as z(ag)=0. Since
p is an atom of C, ¢ is clearly excluded by C, whence the von
Neumann subalgebra generated by C and p contains C properly and
belongs to ¥, which contradicts the maximality of C.

6) A martingale is called an M-net in [6]. The martingale theorem of Doob is
extended for operator algebras in [6, Theorem 2].

7 It is noteworthy that a similar argument admits to derive Lemma 1 from the
usual Blackwell Theorem,
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