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In the following, we deal chiefly with the case when the inverse
images of closed continuous mappings become normal.

Theorem 5. Let f(X)=Y be a closed continuous mapping of a
topological space X onto a paracompact Hausdorff space Y. Then X
is mormal if and only if, for each point y of Y, any two disjoint
closed subsets A, B of the inverse image f '(y) can be separated by
open sets of X, that 18, there exist open sets G, H of X such that
GDOA, HOB and G~H=¢.

Proof. The “only if” part is obvious. So that we shall prove
the “if” part. Let A and B be two disjoint closed sets of X and
let G be an open set of X. Then we can see that the set {y|f '(y)
~ACG} is an open set of Y. In fact, let y, be any point such that
f Y (y,)~ACG and let V=Y — f(A~(X—@G)). Then, since f is a closed
continuous mapping, V is an open set of Y and y,eV, f(V)~4
~(X—G@)=¢. Hence fY(V)~ACG. Therefore the set {y|f '(¥)
~ACG} is an open set of Y. Now let Us={y|f (y)~ACG, f'(y)
~BCX—G}, then U, is an open set of Y. For any point y, of
Y, fY(y,)~A and f'(y,)~B are disjoint closed sets of f (y,). By
assumption, there exist two open sets G,, H, of X such that f~'(y,)
~ACG,, f(y)~BCH, and G,~H,=¢. Since G,~H,=¢, we get
H,CX—G, Hence y,cUs, Then we can see that the family of open
sets {Us| G ranges over all open sets of X} is an open covering of
Y. Since Y is paracompact Hausdorff space, there exists a locally
finite open covering {Vs|Ge®} where & is a family of open sets of

X such that VoC U, for every Ge®. Let H= gvg(f “Y(Ve)~G), then

H is an open set of X and {f'(Ve)~G|Ge®} is locally finite. Hence
H= G\:@(f ‘1(VG)AG)CG\:@(f “I(Vg)~G). On the other hand, since f-*
(Va)~AC f (Us)~ACG, we get fY(Vg)~AC S (Ve)~GCH. Since
{F~%(Vs)| Ge®} covers X, we get ACH. On the other hand, f-%(V,)
/\B"\G-Cf'l(Ug)ABAéC(X—G)AG=¢. Then Bmﬁ:gﬁ. Hence we
have an open set X—H which contains B. Therefore A and B are
separated by open sets H and X—H, and so that X is normal. This
completes the proof.
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Corollary 2.1 (H. Tamano [1]). If f ts a closed continuous mapp-
ing of a topological space X onto a paracompact Hausdorff space
Y, then X is normal if and only if, for any point y of Y, the
inverse image [ y) is mormal and every bounded continuous func-
tion on f~'(y) has a continuous extension over the space X.

Proof. It is sufficient to show the “if” part. Let A4, and B,
be two disjoint closed subsets of f-'(y,), then there exists a bounded
continuous function f, defined on f~*(y,) such that f,(x)=0 for each
ze A, and f(x)=1 for each xzeB,. Let f be a continuous extension

of f, over X and let Goz{x|f(x)<%} and H ={ac|f(x)>%}. Then

G, and H, are open sets of X such that 4,CG, B,CH, and G,~H,
=¢. Then, by Theorem 5, X is normal. This completes the proof.

Corollary 2.2. If f is a closed continuous mapping of a Haus-
dorff space X onto a paracompact Hausdorff space Y such that the in-
verse image f~(y) is normal and the boundary Bf '(y) is compact
Jor every point y of Y, then X is mormal.

Proof. Let A and B be two disjoint closed subsets of f '(y),
then by the normality of f-(y), there exist open sets G and H of
X such that ACf (y)~G, BCf '(y)~H and fY(y)~G~H=4¢.

Since Bf!(y) is compact and X is a Hausdorff space, there exist
open sets G, and H, of X such that Bf-'(y)~ACG,, Bf (y)~BCH,
and G,~H,=¢. Now let G'=[Int f(y)~G]~[G,~G], H'=[Int !
(y)~H]-[H,~H], then ACG’ and BCH’. Since (G,~G)~[Int f!
(y)~H]Cf (y)~G~H=¢, we have G ~H'=¢. Hence, by Theorem
5, X is normal. This completes the proof.

Corollary 2.3. If f is a closed continuous mapping of a regular
topological space onto a paracompact Hausdorff space Y such that
the inverse image f~'(y) is mormal and the boundary Bf (y) has
the Lindelof property for every point y of Y, then X is normal.

Proof. In the proof of Corollary 2.2, Bf-'(y)~A and Bf (y)~B
are disjoint closed sets and each of which has the Lindel6f property.

Since X is regular, we can see that there exist open sets G, and
H, of X such that Bf (y)~ACG,, Bf (y)~BCH, and G,~H,=¢.
Hence we can apply the same argument as Corollary 2.2.

Theorem 6. If f is a closed continuous mapping of a topological
space X onto a paracompact Hausdorff space Y, then X is para-
compact and normal if and only if the following three conditions
are satisfied: for every point y of Y, (a) any two disjoint closed
subsets of f~(y) are separated by open sets of X, (b) f '(y) is para-
compact, (c) for any locally finite open covering {U,} of the boundary
BfY(y), there exists a locally finite system {V,} of open sets of X
such that V,~Bf y)CU, for each a and {V,} covers Bf (y).
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Proof. The “only if” part is obvious. We shall prove the “if”’
part in the following. The normality of X follows from the condi-
tion (a) by virtue of Theorem 5. We next prove the paracompactness
of X. Let {U} be an open covering of X, then, since f-(y) is para-
compact, there exists a locally finite open refinement {W,} of {f *(v)
~U)}). Let W/=W,~Intf *(y). By the condition (c), there exists a
locally finite system {W/} of open sets of X such that W/~8Bf!
(y)CBSf (y)~W, for each ¢ and each W/ is contained in some U..
Then {W/, W'} is a locally finite system of open sets of X and covers
the set f~'(y) and any set of {W/, W/} is contained in some U..

Let {®,|ac A} be the set of all locally finite systems of open
sets of X such that, for each a, every set of &, is contained in some
U. Then {V,|acA} where V,=Y—f(X—<{G|Ge®,}) is an open
covering of Y by the closedness of f. Since Y is paracompact, there
exists a locally finite open refinement {W,|se4} of {V,|acA}. For
every W, we can find V,; of {V,|acA} such that W,CV,,. Then
{fY(W)~G| GeB,uy; 6 4} is locally finite open refinement of {U}.
Hence X is paracompact. This completes the proof.

Corollary 2.4. If f is a closed continuous mapping of a Haus-
dorff space X onto a paracompact Hausdorff space Y such that the in-
verse image f~(y) is paracompact and the boundary B f~*(y) is compact
for every point y of Y, then X is paracompact and normal.

Proof. From Corollary 2.2, we can see that the condition (a) is
satisfied. The condition (c) follows from the compactness of Bf ~'(y).
Hence by Theorem 6, we get Corollary 2.4.

Corollary 2.5. If f is a closed continuous mapping of a regular
topological space X onto a paracompact Hausdorff space Y such that
the inverse image f~'(y) is paracompact and normal and the boundary
BfYy) has the Lindelof property for every point y of Y, then X
18 paracompact and normal.

Proof. By Corollary 2.8, we can easily see that X is normal. We
next prove that the condition (¢) is satisfied. Since Bf-'(y) has the
Lindelof property, we may consider, as a locally finite open covering,
a locally finite countable open covering {U} of Bf-'(y). On the
other hand, from the proof of Lemma 1 of C.H. Dowker [2], we can
see that there exists a locally finite countable open covering {V} of
X such that V;~ACU, for each i. Therefore the condition (c) of
Theorem 6 is satisfied. Hence, by Theorem 6, X is paracompact.
This completes the proof.
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