71. Inverse Images of Closed Mappings. I

By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., June 12, 1961)

Let f be a closed continuous mapping of a topological space Xonto a topological space Y. It is well known that if Y is paracompact and $f^{-1}(y)$ is compact for each point y of Y, then X is paracompact [2,3]. It is interesting to know under what conditions the topological properties of Y may be preserved by the inverse mapping f^{-1} . H. Tamano [7] has recently obtained the necessary and sufficient condition that the inverse image space $X=f^{-1}(Y)$ be normal where X and Y are completely regular T_1 -spaces and Y is paracompact.

In this note, we shall investigate the compactness of the inverse image space $X=f^{-1}(Y)$ under the closed continuous mapping f.

In the first place, let us quickly recall some definitions which were introduced by K. Morita [5]. For any infinite cardinal number m, a topological space X is said to be m-paracompact if any open covering of X with power $\leq m$ (i.e. consisting of at most m sets) admits a locally finite open covering as its refinement. A topological space X is called m-compact if every open covering of power $\leq m$ has a finite subcovering.

Theorem 1. If f is a closed continuous mapping of a topological space X onto an m-paracompact (m-compact) topological space Y such that the inverse image $f^{-1}(y)$ is m-compact for every point y of Y, then X is m-paracompact (m-compact).

Proof. Let $\mathfrak{U}_{2}|\lambda\in\Lambda$, $|\Lambda|\leq\mathfrak{m}$ be an open covering of X where $|\Lambda|$ denotes the power of Λ . And let Γ be the family of all finite subsets γ of Λ , then $|\Gamma|\leq\mathfrak{m}$. Since $f^{-1}(y)$ is \mathfrak{m} -compact for every point y of Y, there exists a finite subset γ of Λ such that $f^{-1}(y) \subset U_{2}$. Let $V_{7}=Y-f(X-\bigcup U_{2})$, then V_{7} is open by the closedness of f and $y\in V_{7}$ and $f^{-1}(V_{7})\subset U_{2}$. Therefore $\mathfrak{B}=\{V_{7}\mid\gamma\in\Gamma\}$ is an open covering of Y with power $\leq\mathfrak{m}$. If Y is \mathfrak{m} -paracompact (\mathfrak{m} -compact), then there exists a locally finite (finite) open refinement $\{W_{\delta}\mid\delta\in\Lambda\}$ of \mathfrak{B} . Since, for each δ there exists a $\gamma_{\delta}\in\Gamma$ such that $f^{-1}(W_{\delta})\subset f^{-1}(V_{7_{\delta}})$ $\subset \bigcup_{\lambda\in\gamma_{\delta}}U_{\lambda}, \{f^{-1}(W_{\delta})\cap U_{7}\mid\delta\in\Lambda,\lambda\in\gamma_{\delta}\}$ is a locally finite (finite) open refinement 1, we have the following corollaries (see [2,3,1]).

Corollary 1.1. If f is a closed continuous mapping of a topological space X onto a paracompact topological space Y such that

No. 6]

the inverse image $f^{-1}(y)$ is compact for every point y of Y, then X is paracompact.

Corollary 1.2. If f is a closed continuous mapping of a topological space X onto a countably paracompact topological space Y such that the inverse image $f^{-1}(y)$ is countably compact for every point y of Y, then X is countably paracompact.

Corollary 1.3 (J. Dieudonné). If X is a paracompact topological space and Y is a compact topological space, then the product space $X \times Y$ is paracompact.

Corollary 1.3 follows from the fact that the projection of $X \times Y$ onto X is a closed continuous mapping.

Theorem 2. Let X be a normal topological space and let Y be a countably paracompact collectionwise normal topological space. If f(X)=Y is a closed continuous mapping such that the inverse image $f^{-1}(y)$ is compact for every point y of Y, then X is countably paracompact and collectionwise normal.

Proof. To prove this theorem, we shall use the theorem due to M. Katětov [4, Theorem 4.1]. Let $\{X_a\}$ be a locally finite collection of subsets of X, then we can see that $\{f(X_a)\}$ is locally finite in Y. In fact, let y be any point of Y. Since $f^{-1}(y)$ is compact and $\{X_a\}$ is locally finite, there exists an open set G such that $f^{-1}(y) \square G$ and G intersects only a finite number of X_a . Then U(y) = Y - f(X - G) is an open neighborhood of y which intersects only a finite number of $f(X_a)$. Hence $\{f(X_a)\}$ is locally finite in Y. Since Y is countably paracompact and collectionwise normal, there exists a locally finite collection of open sets $\{G_a\}$ such that $G_a \square f(X_a)$ for every α . Hence we get $f^{-1}(G_a) \square X_a$ and $\{f^{-1}(G_a)\}$ is a locally finite collection of open sets. Therefore X is countably paracompact and collectionwise normal. This completes the proof.

Theorem 3. If X is a topological space such that every point of X has a neighborhood basis with power $\leq m$ and Y is an mcompact topological space, then the projection of the product space $X \times Y$ onto X is closed.

Proof. Let f(x, y) = x be the projection of $X \times Y$ onto X and let A be a closed subset of $X \times Y$. Let x_0 be any point of $\overline{f(A)}$ and let $\{U_{\lambda}(x_0) \mid \lambda \in \Lambda\}, \mid \Lambda \mid \leq m$ be a neighborhood basis of x_0 , then $U_{\lambda}(x_0)$ $\neg f(A) \neq \phi$. Hence $f^{-1}(U_{\lambda}(x_0)) \neg A \neq \phi$ for every $\lambda \in \Lambda$. On the other hand, since $f^{-1}(U_{\lambda}(x_0)) = U_{\lambda}(x_0) \times Y$, we have $(U_{\lambda}(x_0) \times Y) \neg A \neq \phi$, Hence $A[U_{\lambda}(x_0)] \neq \phi$ where $A[U_{\lambda}(x_0)]$ denotes the set $\{y \mid (x', y) \in \Lambda \text{ for some } x' \in U_{\lambda}(x_0)\}$. Since $\overline{\{A[U_{\lambda}(x_0)] \mid \lambda \in \Lambda\}}$ has the finite intersection property in Y and Y is m-compact, we have $\neg \overline{A[U_{\lambda}(x_0)]} \neq \phi$. On the other hand, we can easily see that $\neg \overline{A[U_{\lambda}(x_0)]} = A[x_0]$. Hence $A[x_0] \neq \phi$. Let y_0 be a point of $A[x_0]$, then $(x_0, y_0) \in A$. Hence $x_0 \in f(A)$ that is, f(A) is closed. This completes the proof.

By Theorems 1 and 3, we can easily verify the following corollaries.

Corollary 1.4. If X is an m-paracompact (m-compact) topological space such that every point of X has a neighborhood basis with power $\leq m$ and Y is an m-compact topological space, then the product space $X \times Y$ is m-paracompact (m-compact).

Corollary 1.5. If X is a countably compact topological space which satisfies the first countability axiom and Y is a countably compact topological space, then the product space $X \times Y$ is countably compact.

Remark 1.1. It was shown by examples that the product space of two countably compact topological spaces is not always countably compact [6,8]. The above corollary has some interest as the case of the product space is countably compact.

Corollary 1.6. If X is a paracompact topological space such that every point of X has a neighborhood basis with power $\leq m$ and Y is an m-compact topological space, then the product space $X \times Y$ is m-paracompact.

Theorem 4. Let X be a topological space such that there exists an F_{σ} -set which is not closed and let Y be a topological space. If the projection of the product space $X \times Y$ onto X is closed, then Y is countably compact.

Proof. Let $\bigcup_{i=1}^{\infty} A_i$ be not closed where each A_i is closed. Let Y be not countably compact. Then there exists a decreasing sequence $\{B_i\}$ of closed subsets of Y such that $\bigcap_{i=1}^{\infty} B_i = \phi$. Let $C = \bigcup_{i=1}^{\infty} (A_i \times B_i)$, then we can see that C is a closed subset of $X \times Y$. In fact, since $\{B_i\}$ is locally finite in Y, $\{A_i \times B_i \mid i=1, 2, \cdots\}$ is locally finite in $X \times Y$. Hence C is a closed subset of $X \times Y$. Now let p be the projection of $X \times Y$ onto X, then p(x, y) = x for every point (x, y) of $X \times Y$. Then $p(C) = \bigcup_{i=1}^{\infty} A_i$ is not closed. Therefore the projection p is not closed. This completes the proof.

Corollary 1.7. Let X be a non-discrete T_1 -space which satisfies the first countability axiom and let Y be a topological space. Then the projection p of the product space $X \times Y$ onto X is closed if and only if Y is countably compact.

Proof. The "if" part is an immediate consequence of Theorem 3. We shall show the "only if" part. Since X is a non-discrete T_1 -space which satisfies the first countability axiom, there exist a point x_0 and a sequence $\{x_n\}$ of X such that $x_n \rightarrow x_0, x_n \neq x_0$ for $n=1, 2 \cdots$.

300

Then the set $\overset{\sim}{\underset{n=1}{\overset{\sim}{\longrightarrow}}} x_n$ is not closed and each x_n is closed since X is a T_1 -space. Then, by Theorem 4, Y is countably compact. This completes the proof.

Remark 1.2. H. Tamano [7] stated that if the projection of the product space $X \times Y$ onto X is closed, then Y is pseudocompact provided that X and Y are completely regular T_1 -spaces and X is not a finite set. But his proof has a slight careless error. By use of Theorem 4, we can establish the following theorem. Let X be a topological space such that there exists a real valued continuous function f(x) on X and the set $\{x \mid f(x) > 0\}$ is not closed and let Y be a topological space. If the projection of the product space $X \times Y$ onto X is closed, then Y is countably compact.

In fact, let $A_i = \left\{ x \left| \frac{1}{i} \ge f(x) \ge \frac{1}{i+1} \right\}$, then $\bigcup_{i=1}^{\infty} A_i$ is not closed

and each A_i is closed. Hence, by Theorem 4, Y is countably compact. So that Theorem 4 is better than his attempt, since the pseudocompactness follows from the countable compactness.

References

- J. Dieudonné: Une généralization des espaces compacts, J. Math. Pures Appl., 23, 65-76 (1944).
- [2] S. Hanai: On closed mappings. II, Proc. Japan Acad., 32, 388-391 (1956).
- [3] M. Henriksen and J. R. Isbell: Some properties of compactifications, Duke Math. J., 25, 83-105 (1958).
- [4] M. Katětov: Extension of locally finite coverings, Colloq. Math., 6, 141-151 (1958).
- [5] K. Morita: Paracompactness and product spaces, forthcoming.
- [6] J. Novák: On the cartesian product spaces, Fund. Math., 40, 106-112 (1953).
- [7] H. Tamano: A theorem on closed mappings, Memoirs of the College of Science, Univ. Kyoto, ser. A 33, Math. no. 2, 309-315 (1960).
- [8] H. Terasaka: On cartesian product of compact spaces, Osaka Math. J., 4, 11-15 (1952).