66. On Some Properties of Fractional Powers of Linear Operators

By Jiro Watanabe
Mitsubishi Atomic Power Industries, Tokyo, Japan
(Comm. by Z. Suetuna, m.J.A., June 12, 1961)

A class of linear operators in a Banach space X is considered in a note by T. Kato. ${ }^{1)}$ A linear operator A in X is said to be of type (ω, M), if A is densely defined and closed, the resolvent set of $-A$ contains the open sector $|\arg \lambda|<\pi-\omega, 0<\omega<\pi$, and $\lambda(\lambda+A)^{-1}$ is uniformly bounded in each smaller sector $|\arg \lambda|<\pi-\omega-\varepsilon, \varepsilon>0$, in particular $\lambda\left\|(\lambda+A)^{-1}\right\| \leq M, \lambda>0$. The fractional power $A^{a}, 0<\alpha<1$, of A is defined by Kato through

$$
\left(\lambda+A^{\alpha}\right)^{-1}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\mu^{\alpha}}{\lambda^{2}+2 \lambda \mu^{\alpha} \cos \pi \alpha+\mu^{2 \alpha}}(\mu+A)^{-1} d \mu,
$$

where λ is in the sector $|\arg \lambda|<(1-\alpha) \pi$, and is shown to be of type ($\alpha \omega, M$).
K. Yosida ${ }^{2)}$ gave an example showing that $\left(A^{2}\right)^{1 / 2} \neq A$ where $-A$ and $-A^{2}$ are infinitesimal generators of strongly continuous semigroups. In this paper we shall prove, however, that $\left(A^{\alpha}\right)^{\beta}=A^{\alpha \beta}, 0<\alpha$, $\beta<1$. We shall also prove that the semi-group $\left\{\exp \left(-t A^{\alpha}\right)\right\}$ generated by $-A^{\alpha}$ is continuous with respect to α in the uniform operator topology. This result overlaps with A. V. Balakrishnan's result ${ }^{3)}$ which says that $A^{\alpha} x$ is, for $x \in \mathfrak{D}(A)$, left-continuous at $\alpha=1$.

Theorem 1. Let A be of type (ω, M), then

$$
\left(A^{\alpha}\right)^{\beta}=A^{\alpha \beta}, \quad 0<\alpha, \beta<1 .
$$

Proof. For any μ in the sector $|\arg \mu|<(1-\beta) \pi$

$$
\left.\begin{array}{rl}
\left(\mu+\left(A^{\alpha}\right)^{\beta}\right)^{-1}= & \frac{1}{(2 \pi i)^{2}} \tag{1}
\end{array} \int_{0}^{\infty}\left(\frac{1}{\mu+\lambda^{\beta} e^{-i \pi \beta}}-\frac{1}{\mu+\lambda^{\beta} e^{i \pi \beta}}\right) d \lambda\right] .
$$

The double integral being absolutely convergent, we may interchange the order of the integration. Since we obtain

$$
\frac{1}{2 \pi i} \int_{0}^{\infty}\left(\frac{1}{\mu+\lambda^{\beta} e^{-i \pi \beta}}-\frac{1}{\mu+\lambda^{\beta} e^{i \pi \beta}}\right)\left(\frac{1}{\lambda+\zeta^{\alpha} e^{-i \pi \alpha}}-\frac{1}{\lambda+\zeta^{\alpha} e^{i \pi \alpha}}\right) d \lambda
$$

[^0]\[

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int_{c} \frac{1}{\mu+z^{\beta}}\left(\frac{1}{z-\zeta^{\alpha} e^{-i \pi \alpha}}-\frac{1}{z-\zeta^{\alpha} e^{i \pi \alpha}}\right) d z \\
& =\frac{1}{\mu+\zeta^{\alpha \beta} e^{-i \pi \alpha \beta}}-\frac{1}{\mu+\zeta^{\alpha \beta} e^{i \pi \alpha \beta}},
\end{aligned}
$$
\]

where the path C runs from $\infty e^{i \pi}$ to 0 and from 0 to $\infty e^{-i \pi}$, it follows from (1) that

$$
\left(\mu+\left(A^{\alpha}\right)^{\beta}\right)^{-1}=\left(\mu+A^{\alpha \beta}\right)^{-1}
$$

This shows that $\left(A^{\alpha}\right)^{\beta}=A^{\alpha \beta}$.
Lemma 1. For each $\varepsilon>0$, $\sup \left[\left\|\lambda\left(\lambda+A^{\alpha}\right)^{-1}\right\| ;|\arg \lambda| \leq \pi-\omega-\varepsilon, 0<\alpha \leq 1\right]<\infty$.
Proof. Since A is of type (ω, M), there exists an $M_{0}<0$ such that

$$
\left\|\lambda(\lambda+A)^{-1}\right\| \leq M_{0}
$$

for any λ in the sector $|\arg \lambda| \leq \pi-\omega-\varepsilon$. For each α with $0<\alpha<1$ and for each λ in the sector, we have

$$
\lambda\left(\lambda+A^{\alpha}\right)^{-1}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty e^{i \theta}} \frac{\lambda \mu^{\alpha}}{\left(\lambda+\mu^{\alpha} e^{-i \pi \alpha}\right)\left(\lambda+\mu^{\alpha} e^{i \pi \alpha}\right)}(\mu+A)^{-1} d \mu
$$

where $\theta=\arg \lambda$. Introducing a new integration variable $\xi=\frac{|\mu|^{\alpha}}{|\lambda|}$, we obtain for $\theta \geq 0$

$$
\begin{aligned}
\left\|\lambda\left(\lambda+A^{\alpha}\right)^{-1}\right\| & \leq \frac{M_{0} \sin \pi \alpha}{\pi}\left|\int_{0}^{\infty e^{i \theta}} \frac{\lambda \mu^{\alpha}}{\left(\lambda+\mu^{\alpha} e^{-i x \alpha}\right)} d \mu\right| \\
& =\frac{M_{0} \sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{d \xi}{1+2 \xi \cos (\alpha \theta-\theta-\pi \alpha)+\xi^{2}} \\
& =\frac{M_{0} \sin \pi \alpha \cdot[(\pi-\theta) \alpha+\theta]}{\pi \alpha \sin [(\pi-\theta)(1-\alpha)]}
\end{aligned}
$$

and for $\theta \leq 0$, similarly as above,

$$
\left\|\lambda(\lambda+A)^{-1}\right\| \leq \frac{M_{0} \sin \pi \alpha \cdot[(\pi+\theta) \alpha-\theta]}{\pi \alpha \sin [(\pi+\theta)(1-\alpha)]}
$$

Hence the assertion is easily seen.
Lemma 2. For each λ with $|\arg \lambda|<\pi-\omega$

$$
\lim _{\alpha 11}\left(\lambda+A^{\alpha}\right)^{-1}=(\lambda+A)^{-1}
$$

in the sense of the uniform operator topology. The limit holds uniformly in each compact subset of the sector $|\arg \lambda|<\pi-\omega$.

Proof. To prove the assertion it is sufficient to show that

$$
\begin{equation*}
\lim _{\alpha \uparrow 1}\left(1+A^{\alpha}\right)^{-1}=(1+A)^{-1} \tag{2}
\end{equation*}
$$

because of the resolvent equation and Lemma 1.

$$
\begin{align*}
& \left(1+A^{\alpha}\right)^{-1}-(1+A)^{-1} \\
& =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\mu^{\alpha-1}}{1+2 \mu^{\alpha} \cos \pi \alpha+\mu^{2 \alpha}}\left[\mu(\mu+A)^{-1}-(1+A)^{-1}\right] d \mu \tag{3}
\end{align*}
$$

For any $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left\|\mu(\mu+A)^{-1}-(1+A)^{-1}\right\| \leq \varepsilon
$$

if $|\mu-1| \leq \delta$. To see (2), we break up the interval of the integral in (3) into three parts:

$$
I_{1}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{1-\delta}, \quad I_{2}=\frac{\sin \pi \alpha}{\pi} \int_{i-\delta}^{1+\delta}, \quad I_{3}=\frac{\sin \pi \alpha}{\pi} \int_{1+\delta}^{\infty}
$$

If we set $\alpha \geq \frac{1}{2}$, then by a simple calculation we obtain

$$
\left\|I_{1}\right\| \leq \frac{4 M \sin \pi \alpha \cdot \sqrt{1-\delta}}{\pi(1-\sqrt{1-\delta})^{2}}, \quad\left\|I_{3}\right\| \leq \frac{4 M \sin \pi \alpha \cdot \sqrt{1+\delta}}{\pi(\sqrt{1+\delta}-1)^{2}}
$$

It follows that $\lim _{\alpha \uparrow 1}\left\|I_{1}\right\|=0=\lim _{\alpha \uparrow 1}\left\|I_{3}\right\|$. On the other hand it is clear that $\left\|I_{2}\right\| \leq \varepsilon$. Hence (2) is proved.

Remark. For fixed $\lambda\left(=e^{\rho+i \theta}\right)$ in the sector $|\arg \lambda|<\pi-\omega,\left(\lambda+A^{\alpha}\right)^{-1}$ with $0<\alpha<1$ is defined through

$$
\begin{equation*}
\left(\lambda+A^{\alpha}\right)^{-1}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty e^{i \theta}} \frac{\mu^{\alpha}}{\lambda^{2}+2 \lambda \mu^{\alpha} \cos \pi \alpha+\mu^{2 \alpha}}(\mu+A)^{-1} d \mu \tag{4}
\end{equation*}
$$

We shall define $\left(\lambda+A^{\alpha}\right)^{-1}$ through (4) for α in the region

$$
\begin{aligned}
&\left\{\alpha:\left|\alpha-\frac{1}{2}\left(1+\frac{i \rho}{\pi-\theta}\right)\right|\right.<\frac{\sqrt{(\pi-\theta)^{2}+\rho^{2}}}{2(\pi-\theta)} \\
&\text { and } \left.\left|\alpha-\frac{1}{2}\left(1-\frac{i \rho}{\pi+\theta}\right)\right|<\frac{\sqrt{(\pi+\theta)^{2}+\rho^{2}}}{2(\pi+\theta)}\right\}
\end{aligned}
$$

in the complex α-plane, then it is clear that $\left(\lambda+A^{\alpha}\right)^{-1}$ is analytic in the region.

Theorem 2. The semi-group $\exp \left(-t A^{\alpha}\right)$ generated by $-A^{\alpha}$ is continuous in the uniform operator topology with respect to α in 0 $<\alpha \leq 1$ if $0<\omega<\frac{\pi}{2}$, or in $0<\alpha<\frac{\pi}{2 \omega}$ if $\frac{\pi}{2}<\omega<\pi$.

Proof. Suppose that $0<\omega<\frac{\pi}{2}$. Then for any $\alpha, 0<\alpha \leq 1$, and for any fixed $t>0$

$$
\begin{equation*}
\exp \left(-t A^{a}\right)=\frac{1}{2 \pi i} \int_{\Sigma} \frac{e^{\zeta}}{\zeta} \frac{\zeta}{t}\left(\frac{\zeta}{t}+A^{a}\right)^{-1} d \zeta \tag{5}
\end{equation*}
$$

where the integration path L runs in the sector $|\arg \zeta|<\pi-\omega$ from $\infty e^{-i \theta_{1}}$ to $\infty e^{-i \theta_{2}}$ with $\frac{\pi}{2}<\theta_{1}, \theta_{2}<\pi-\omega$. The uniform boundedness of $\frac{\zeta}{t}\left(\frac{\zeta}{t}+A^{\alpha}\right)^{-1}$, the continuity of $\left(\frac{\zeta}{t}+A^{\alpha}\right)^{-1}$ for α and the integrability of $\left|\frac{e^{r}}{\zeta}\right|$ over L show that $\exp \left(-t A^{\alpha}\right)$ is continuous in α.

In the case of $\frac{\pi}{2} \leq \omega<\pi$, we can prove the assertion as above by taking integration path L in (5) appropriately.

[^0]: 1) T. Kato: Note on fractional powers of linear operators, Proc. Japan Acad., 36, 94-96 (1960).
 2) K. Yosida: Fractional powers of infinitesimal generators and the analyticity of the semi-groups generated by them, Proc. Japan Acad., 36, 86-89 (1960).
 3) A. V. Balakrishnan: Fractional powers of closed operators and the semi-groups generated by them, Pacific J. Math., 10, 419-437 (1960).
