66. On Some Properties of Fractional Powers of Linear Operators

By Jiro WATANABE

Mitsubishi Atomic Power Industries, Tokyo, Japan (Comm. by Z. SUETUNA, M.J.A., June 12, 1961)

A class of linear operators in a Banach space X is considered in a note by T. Kato.¹⁾ A linear operator A in X is said to be of type (ω, M) , if A is densely defined and closed, the resolvent set of -Acontains the open sector $|\arg \lambda| < \pi - \omega$, $0 < \omega < \pi$, and $\lambda(\lambda + A)^{-1}$ is uniformly bounded in each smaller sector $|\arg \lambda| < \pi - \omega - \varepsilon$, $\varepsilon > 0$, in particular $\lambda || (\lambda + A)^{-1} || \le M$, $\lambda > 0$. The fractional power A^{α} , $0 < \alpha < 1$, of A is defined by Kato through

$$(\lambda+A^{\alpha})^{-1}=\frac{\sin \pi\alpha}{\pi}\int_{0}^{\infty}\frac{\mu^{\alpha}}{\lambda^{2}+2\lambda\mu^{\alpha}\cos \pi\alpha+\mu^{2\alpha}}(\mu+A)^{-1}d\mu,$$

where λ is in the sector $|\arg \lambda| < (1-\alpha)\pi$, and is shown to be of type $(\alpha \omega, M)$.

K. Yosida²⁾ gave an example showing that $(A^2)^{1/2} \neq A$ where -Aand $-A^2$ are infinitesimal generators of strongly continuous semigroups. In this paper we shall prove, however, that $(A^{\alpha})^{\beta} = A^{\alpha\beta}$, $0 < \alpha$, $\beta < 1$. We shall also prove that the semi-group $\{\exp(-tA^{\alpha})\}$ generated by $-A^{\alpha}$ is continuous with respect to α in the uniform operator topology. This result overlaps with A. V. Balakrishnan's result³⁾ which says that $A^{\alpha}x$ is, for $x \in \mathfrak{D}(A)$, left-continuous at $\alpha = 1$.

Theorem 1. Let A be of type (ω, M) , then $(A^{\alpha})^{\beta} = A^{\alpha\beta}, \quad 0 < \alpha, \beta < 1.$ Proof. For any μ in the sector $|\arg \mu| < (1-\beta)\pi$ $(\mu + (A^{\alpha})^{\beta})^{-1} = \frac{1}{(2\pi i)^2} \int_0^{\infty} \left(\frac{1}{\mu + \lambda^{\beta} e^{-i\pi\beta}} - \frac{1}{\mu + \lambda^{\beta} e^{i\pi\beta}}\right) d\lambda$ (1) $\int_0^{\infty} \left(\frac{1}{\lambda + \zeta^{\alpha} e^{-i\pi\alpha}} - \frac{1}{\lambda + \zeta^{\alpha} e^{i\pi\alpha}}\right) (\zeta + A)^{-1} d\zeta.$

The double integral being absolutely convergent, we may interchange the order of the integration. Since we obtain

$$\frac{1}{2\pi i}\int_{0}^{\infty} \left(\frac{1}{\mu+\lambda^{\theta}e^{-i\pi\theta}}-\frac{1}{\mu+\lambda^{\theta}e^{i\pi\theta}}\right) \left(\frac{1}{\lambda+\zeta^{\alpha}e^{-i\pi\alpha}}-\frac{1}{\lambda+\zeta^{\alpha}e^{i\pi\alpha}}\right) d\lambda$$

1) T. Kato: Note on fractional powers of linear operators, Proc. Japan Acad., **36**, 94-96 (1960).

2) K. Yosida: Fractional powers of infinitesimal generators and the analyticity of the semi-groups generated by them, Proc. Japan Acad., **36**, 86-89 (1960).

3) A. V. Balakrishnan: Fractional powers of closed operators and the semi-groups generated by them, Pacific J. Math., 10, 419-437 (1960).

$$= rac{1}{2\pi i} \int_{c} rac{1}{\mu + z^{eta}} \Big(rac{1}{z - \zeta^{lpha} e^{-i\pi lpha}} - rac{1}{z - \zeta^{lpha} e^{i\pi lpha}} \Big) dz
onumber \ = rac{1}{\mu + \zeta^{lphaeta} e^{-i\pi lphaeta}} - rac{1}{\mu + \zeta^{lphaeta} e^{i\pi lphaeta}} \,,$$

where the path C runs from $\infty e^{i\pi}$ to 0 and from 0 to $\infty e^{-i\pi}$, it follows from (1) that

$$(\mu + (A^{\alpha})^{\beta})^{-1} = (\mu + A^{\alpha\beta})^{-1}.$$

This shows that $(A^{\alpha})^{\beta} = A^{\alpha\beta}$.

Lemma 1. For each $\varepsilon > 0$,

 $\sup \left[|| \lambda(\lambda + A^{\alpha})^{-1} ||; | \arg \lambda | \leq \pi - \omega - \varepsilon, \ 0 < \alpha \leq 1 \right] < \infty.$

Proof. Since A is of type (ω, M) , there exists an $M_0 < 0$ such that

$$\|\lambda(\lambda+A)^{-1}\|\leq M_0$$

for any λ in the sector $|\arg \lambda| \le \pi - \omega - \varepsilon$. For each α with $0 < \alpha < 1$ and for each λ in the sector, we have

$$\lambda(\lambda+A^{\alpha})^{-1} = \frac{\sin \pi\alpha}{\pi} \int_{0}^{\infty e^{i\theta}} \frac{\lambda\mu^{\alpha}}{(\lambda+\mu^{\alpha}e^{-i\pi\alpha})(\lambda+\mu^{\alpha}e^{i\pi\alpha})} (\mu+A)^{-1} d\mu$$

where $\theta = \arg \lambda$. Introducing a new integration variable $\xi = \frac{|\mu|^{\alpha}}{|\lambda|}$, we obtain for $\theta \ge 0$

$$\begin{split} || \lambda(\lambda+A^{\alpha})^{-1} || &\leq \frac{M_0 \sin \pi \alpha}{\pi} \left| \int_0^{\infty e^{\xi \theta}} \frac{\lambda \mu^{\alpha}}{(\lambda+\mu^{\alpha} e^{-i\pi \alpha})} d\mu \right| \\ &= \frac{M_0 \sin \pi \alpha}{\pi} \int_0^{\infty} \frac{d\xi}{1+2\xi \cos (\alpha \theta - \theta - \pi \alpha) + \xi^2} \\ &= \frac{M_0 \sin \pi \alpha \cdot [(\pi - \theta)\alpha + \theta]}{\pi \alpha \sin [(\pi - \theta)(1 - \alpha)]}, \end{split}$$

and for $\theta \leq 0$, similarly as above,

$$||\lambda(\lambda+A)^{-1}|| \leq \frac{M_0 \sin \pi \alpha \cdot [(\pi+\theta)\alpha - \theta]}{\pi \alpha \sin [(\pi+\theta)(1-\alpha)]}.$$

Hence the assertion is easily seen.

Lemma 2. For each
$$\lambda$$
 with $|\arg \lambda| < \pi - \omega$
$$\lim_{\alpha \uparrow 1} (\lambda + A^{\alpha})^{-1} = (\lambda + A)^{-1}$$

in the sense of the uniform operator topology. The limit holds uniformly in each compact subset of the sector $|\arg \lambda| < \pi - \omega$.

Proof. To prove the assertion it is sufficient to show that

(2)
$$\lim_{a \uparrow 1} (1+A^{a})^{-1} = (1+A)^{-1},$$

because of the resolvent equation and Lemma 1.

$$(1+A^{\alpha})^{-1}-(1+A)^{-1}$$

$$(3) = \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\mu^{\alpha-1}}{1+2\mu^{\alpha} \cos \pi \alpha + \mu^{2\alpha}} [\mu(\mu+A)^{-1} - (1+A)^{-1}] d\mu.$$

274

No. 6] On Some Properties of Fractional Powers of Linear Operators

For any
$$\varepsilon > 0$$
 there exists a $\delta > 0$ such that
 $|| \mu(\mu + A)^{-1} - (1 + A)^{-1} || \le \varepsilon$
if $| \mu - 1 | \le \delta$. To see (2), we break up the interval of the integral
in (3) into three parts:

$$I_1 = \frac{\sin \pi \alpha}{\pi} \int_0^{1-\delta}, \qquad I_2 = \frac{\sin \pi \alpha}{\pi} \int_{1-\delta}^{1+\delta}, \qquad I_3 = \frac{\sin \pi \alpha}{\pi} \int_{1+\delta}^{\infty}.$$

If we set $\alpha \ge \frac{1}{2}$, then by a simple calculation we obtain

$$||I_1|| \leq \frac{4M \sin \pi \alpha \cdot \sqrt{1-\delta}}{\pi (1-\sqrt{1-\delta})^2}, \qquad ||I_3|| \leq \frac{4M \sin \pi \alpha \cdot \sqrt{1+\delta}}{\pi (\sqrt{1+\delta}-1)^2}.$$

It follows that $\lim_{\alpha \uparrow 1} || I_1 || = 0 = \lim_{\alpha \uparrow 1} || I_3 ||$. On the other hand it is clear that $|| I_2 || \le \epsilon$. Hence (2) is proved.

Remark. For fixed $\lambda (=e^{\rho+i\theta})$ in the sector $|\arg \lambda| < \pi - \omega$, $(\lambda + A^{\alpha})^{-1}$ with $0 < \alpha < 1$ is defined through

$$(4) \qquad (\lambda+A^{\alpha})^{-1} = \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty e^{\lambda \alpha}} \frac{\mu^{\alpha}}{\lambda^{2}+2\lambda \mu^{\alpha} \cos \pi \alpha + \mu^{2\alpha}} (\mu+A)^{-1} d\mu.$$

We shall define $(\lambda + A^{\alpha})^{-1}$ through (4) for α in the region

$$egin{aligned} &\left\{lpha : \left|lpha - rac{1}{2} \Big(1 + rac{i
ho}{\pi - heta} \Big)
ight| &< rac{\sqrt{(\pi - heta)^2 +
ho^2}}{2(\pi - heta)} \ & ext{ and } \left|lpha - rac{1}{2} \Big(1 - rac{i
ho}{\pi + heta} \Big)
ight| &< rac{\sqrt{(\pi + heta)^2 +
ho^2}}{2(\pi + heta)} \end{aligned}$$

in the complex α -plane, then it is clear that $(\lambda + A^{\alpha})^{-1}$ is analytic in the region.

Theorem 2. The semi-group $\exp(-tA^{\alpha})$ generated by $-A^{\alpha}$ is continuous in the uniform operator topology with respect to α in $0 < \alpha \leq 1$ if $0 < \omega < \frac{\pi}{2}$, or in $0 < \alpha < \frac{\pi}{2\omega}$ if $\frac{\pi}{2} < \omega < \pi$.

Proof. Suppose that $0 < \omega < \frac{\pi}{2}$. Then for any α , $0 < \alpha \le 1$, and for any fixed t > 0

(5)
$$\exp(-tA^{\alpha}) = \frac{1}{2\pi i} \int_{L} \frac{e^{\zeta}}{\zeta} \frac{\zeta}{t} \left(\frac{\zeta}{t} + A^{\alpha}\right)^{-1} d\zeta$$

where the integration path L runs in the sector $|\arg \zeta| < \pi - \omega$ from $\infty e^{-i\theta_1}$ to $\infty e^{-i\theta_2}$ with $\frac{\pi}{2} < \theta_1$, $\theta_2 < \pi - \omega$. The uniform boundedness of $\frac{\zeta}{t} \left(\frac{\zeta}{t} + A^{\alpha}\right)^{-1}$, the continuity of $\left(\frac{\zeta}{t} + A^{\alpha}\right)^{-1}$ for α and the integrability of $\left|\frac{e^{\zeta}}{\zeta}\right|$ over L show that $\exp(-tA^{\alpha})$ is continuous in α .

In the case of $\frac{\pi}{2} \le \omega < \pi$, we can prove the assertion as above by taking integration path L in (5) appropriately.