# 6. On the Functional-Representations of Normal Operators in Hilbert Spaces 

By Sakuji Inoue<br>Faculty of Education, Kumamoto University<br>(Comm. by K. Kunugı, m.J.a., Jan. 12, 1962)

Let $\mathfrak{y}$ be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ and $\left\{\psi_{\mu}\right\}_{\mu=1,2,3, \ldots}$ both be incomplete orthonormal sets in $\mathfrak{5}$ which have no element in common and together form a complete orthonormal set in that space; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}$ be an arbitrarily prescribed bounded sequence in the complex plane; let $\left\{u_{i j}\right\}$ be an infinite unitary matrix with $\left|u_{j j}\right| \neq 1$, $j=1,2,3, \cdots$; let $\Psi_{\mu}=\sum_{j=1}^{\infty} u_{\mu_{j}} \psi_{j}$; let $L_{x}$ be the continuous linear functional associated with an arbitrary $x \in \mathfrak{F}$; and let $y \otimes L_{x}$ be the operator defined by $\left(y \otimes L_{x}\right) z=(z, x) y$ for an arbitrarily given $y \in \mathfrak{F}$ and for every $z \in \mathfrak{J}$. Then, with respect to the operator $N$ defined as

$$
N=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}},
$$

where $c$ is an arbitrarily given complex constant, I have proved in Vol. 37, No. 10 (1961) of Proceedings of the Japan Academy that not only the right-hand side converges uniformly, but that also $N$ is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ in $\mathfrak{S}$, and have defined the expression of the right-hand side as "the functionalrepresentation of $N^{\prime \prime}$.

The purpose of this paper is to prove that conversely every bounded normal operator $N$ in $\mathfrak{h}$ is essentially expressible by such an infinite series of the continuous linear functionals associated with all the elements of a complete orthonormal set in $\mathfrak{F}$ as described above.

Theorem A. Let $N$ be a bounded normal operator in $\mathfrak{s}$; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of $N$ ); let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be an orthonormal set determining the subspace $M$ determined by all the eigenelements of $N$, such that $\varphi_{\nu}$ is a normalized eigenelement corresponding to an arbitrary eigenvalue $\lambda_{\nu}$ of $N$; let $\left\{\psi_{\mu}\right\}_{\mu=1,2,3}, \ldots$ be an orthonormal set determining the orthogonal complement $\mathfrak{M}$ of $\mathfrak{M}$; and let $L_{f}$ be the continuous linear functional associated with any $f \in \mathscr{J}$. Then $\left\|N \psi_{\mu}\right\|^{2}$, $\mu=1,2,3, \cdots$, assume the same value, which will be denoted by $\sigma$; and if we choose arbitrarily a complex constant $c$ with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu}=\sum_{j} u_{\mu_{j}} \psi_{j}$, where $u_{\mu_{j}}=\left(N \psi_{\mu}, \psi_{j}\right) / c$ and $\sum_{j}$
denotes the sum for all $\psi_{j} \in\left\{\psi_{\mu}\right\}$, the equality

$$
\begin{equation*}
N=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu} \Psi_{\mu} \otimes L_{\psi_{\mu}} \tag{1}
\end{equation*}
$$

holds on the domain $\mathfrak{y}$ of $N$, and moreover the matrix $\left(u_{k j}\right)$ associated with all the elements of $\left\{\psi_{k}\right\}$ is unitary and possesses the property $\left|u_{j j}\right| \neq 1$ for $j=1,2,3, \cdots$.

Proof. By hypotheses, $\mathrm{N} \varphi_{k}=\lambda_{k} \varphi_{k}, \kappa=1,2,3, \cdots$; and in addition, $\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}\left(\varphi_{k}\right)=\lambda_{k} \varphi_{k}, k=1,2,3, \cdots$. Since, on the other hand, any element $g$ of $\mathfrak{M}$ is expressed in the form $g=\sum_{\nu}\left(g, \varphi_{\nu}\right) \varphi_{\nu}$, these results permit us to assert that the equality $N=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}$ holds on $\mathfrak{m}$.

Now, let $\{K(z)\}$ be the complex spectral family associated with $N, K$, the eigenprojector corresponding to an arbitrary eigenvalue $\lambda_{\nu}$ of $N$, and $\Delta(N)$ the continuous spectrum of $N$. Then, since $N=\sum_{\nu}^{\prime} \lambda_{\nu} K_{\nu}+\int_{\Lambda_{(N)}} z d K(z)$, where $\sum_{\nu}^{\prime}$ denotes the sum for all distinct eigenvalues $\lambda_{\nu}$ in $\left\{\lambda_{\nu}\right\}$, and since $K_{\nu} \psi_{\mu}=0$ for every pair of $\mu, \nu, N \psi_{\mu}$, $\mu=1,2,3, \cdots$, belong to $\Re$. Putting $\Phi_{\mu}=\sum_{j} C_{\mu_{j}} \psi_{j}$ where $C_{\mu_{j}}=\left(N \psi_{\mu}\right.$, $\psi_{j}$ ) and $\sum_{j}$ denotes the sum for all $\psi_{j} \in\left\{\psi_{\mu}\right\}$, we have therefore

$$
\begin{aligned}
\sum_{\mu} \Phi_{p} \otimes L_{\phi_{k}}\left(\psi_{p}\right) & =\Phi_{p} \\
& =\sum_{j} C_{p j} \psi_{j} \\
& =N \psi_{p}
\end{aligned}
$$

for every $\psi_{p} \in\left\{\psi_{p}\right\}$. This result leads us to the assertion that the equality $N=\sum_{\mu} \Phi_{\mu} \otimes L_{\psi_{\mu}}$ holds on $\Re$. Since, furthermore, any element $f \in \mathfrak{g}$ is uniquely expressed in the form $f=g+h$ where $g \in \mathfrak{M}$ and $h \in \mathfrak{R}$, and since

$$
\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(f)=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(g)=N g
$$

and

$$
\sum_{\mu} \Phi_{\mu} \otimes L_{\phi_{\mu}}(f)=\sum_{\mu} \Phi_{k} \otimes L_{\phi_{\mu}}(h)=N h,
$$

we obtain

$$
N f=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(f)+\sum_{k} \Phi_{\mu} \otimes L_{\phi_{k}}(f),
$$

which shows that the equality

$$
N=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{q_{\nu}}+\sum_{\mu} \Phi_{\mu} \otimes L_{\phi_{\mu}}
$$

holds on $\mathfrak{g}$.
If we next denote by $\delta$ an arbitrary subset with non-zero measure of $\Delta(N), K(\delta)$ is a projector and hence the relation

$$
\begin{aligned}
\left.(K(\delta)) f, f^{\prime}\right)= & \left\|K(\delta) \frac{f+f^{\prime}}{2}\right\|^{2}-\left\|K(\delta) \frac{f-f^{\prime}}{2}\right\|^{2} \\
& +i\left[\left\|K(\delta) \frac{f+i f^{\prime}}{2}\right\|^{2}-\left\|K(\delta) \frac{f-i f^{\prime}}{2}\right\|^{2}\right]
\end{aligned}
$$

holds for every pair of $f, f^{\prime} \in \mathfrak{\xi}$. Remembering that $K_{\nu} \psi_{\mu}=0$ for
every pair of $\mu, \nu$, we have therefore

$$
\begin{align*}
\left(N \psi_{\mu}, N \psi_{j}\right)= & \int_{\Delta(N)}|z|^{2} d\left(K(z) \psi_{\mu}, \psi_{j}\right) \\
= & \int_{\Delta(N)}|z|^{2} d\left[\left\|K(z) \frac{\psi_{\mu}+\psi_{j}}{2}\right\|^{2}-\left\|K(z) \frac{\psi_{\mu}-\psi_{j}}{2}\right\|^{2}\right]  \tag{2}\\
& +i \int_{\Delta(N)}|z|^{2} d\left[\left\|K(z) \frac{\psi_{\mu}+i \psi_{j}}{2}\right\|^{2}-\left\|K(z) \frac{\psi_{\mu}-i \psi_{j}}{2}\right\|^{2}\right] .
\end{align*}
$$

On the other hand, since

$$
\begin{equation*}
\zeta(\delta) \equiv\left\|K(\delta) \frac{\psi_{\mu}+\psi_{j}}{2}\right\|^{2}=\left\|K(\delta) \frac{\psi_{\mu}-\psi_{j}}{2}\right\|^{2}+\Re\left(K(\delta) \psi_{\mu}, \psi_{j}\right) \geqq 0, \tag{3}
\end{equation*}
$$

the set function $\zeta$ defined here is an extended real valued and nonnegative set function, defined on $\Delta(N)$ forming a (Boolean) ring, and such that $\zeta(0)=0$. Moreover the verification of the assertion that $\zeta$ is countably additive offers no difficulty. It is thus apparent that $\zeta$ is a measure. In consequence, by applying the mean value theorem for integrals to the equality

$$
\int_{\Delta(N)}|z|^{2} d\left\|K(z) \frac{\psi_{\mu}+\psi_{j}}{2}\right\|^{2}=\int_{\Delta(N)}|z|^{2} d\left[\left\|K(z) \frac{\psi_{\mu}-\psi_{j}}{2}\right\|^{2}+\Re\left(K(z) \psi_{\mu}, \psi_{j}\right)\right]
$$

deduced from (3), we find from the boundedness of $N$ that

$$
\begin{aligned}
\rho \int_{\Delta(N)} d\left\|K(z) \frac{\psi_{\mu}+\psi_{j}}{2}\right\|^{2} & =\rho \int_{\Delta(N)} d\left[\left\|K(z) \frac{\psi_{\mu}-\psi_{j}}{2}\right\|^{2}+\Re\left(K(z) \psi_{\mu}, \psi_{j}\right)\right] \\
& =\rho \int_{\Delta(N)} d\left\|K(z) \frac{\psi_{\mu}-\psi_{j}}{2}\right\|^{2}+\rho \int_{\Delta(N)} d\left[\Re\left(K(z) \psi_{\mu}, \psi_{j}\right)\right],
\end{aligned}
$$

where $\rho$ is a suitable positive constant such that $\inf _{z \in A(N)}|z|^{2} \leqq \rho$ $\leqq \sup _{z \in \Delta(N)}|z|^{2} \leqq\|N\|^{2}$. As will be found from (2), this result shows that

$$
\begin{aligned}
\Re\left(N \psi_{\mu}, N \psi_{j}\right) & =\rho \int_{\Delta(N)} d\left[\Re\left(K(z) \psi_{\mu}, \psi_{j}\right)\right] \\
& =\rho \Re\left(K(\Delta(N)) \psi_{\mu}, \psi_{j}\right) \\
& =\rho \Re\left(\psi_{\mu}, \psi_{j}\right) \\
& =0
\end{aligned}
$$

for every pair of two distinct elements $\psi_{\mu}, \psi_{j} \in\left\{\psi_{\mu}\right\}$.
In the same manner as above, we find that $\mathfrak{F}\left(N \psi_{\mu}, N \psi_{j}\right)=0$ for all distinct $\psi_{\mu}, \psi_{j} \in\left\{\psi_{\mu}\right\}$. Consequently the relation $\left(N \psi_{\mu}, N \psi_{j}\right)=0$ holds for every pair of distinct $\psi_{\mu}, \psi_{j} \in\left\{\psi_{\mu}\right\}$.

Furthermore, by reasoning exactly like that applied to $\Re\left(N \psi_{\mu}\right.$, $N \psi_{j}$ ), we can find that

$$
\begin{aligned}
\Re\left(N \left(\psi_{\mu}+\right.\right. & \left.\left.\psi_{j}\right), N\left(\psi_{\mu}-\psi_{j}\right)\right) \\
& =\gamma \int_{\Delta(N)} d\left[\Re\left(K(z)\left(\psi_{\mu}+\psi_{j}\right), \psi_{\mu}-\psi_{j}\right)\right], \quad\left(0<\gamma \leqq\|N\|^{2}\right), \\
& =\gamma \Re\left(\psi_{\mu}+\psi_{j}, \psi_{\mu}-\psi_{j}\right) \\
& =0,
\end{aligned}
$$

whereas $\left(N\left(\psi_{\mu}+\psi_{j}\right), N\left(\psi_{\mu}-\psi_{j}\right)\right)=\left\|N \psi_{\mu}\right\|^{2}-\left\|N \psi_{j}\right\|^{2}$. Hence all the $\left\|N \psi_{\mu}\right\|^{2}$ for $\mu=1,2,3, \cdots$ assume the same value, which will be denoted by $\sigma$.

We now choose arbitrarily a complex number $c$ such that $|c|^{2}=\sigma$ and put $\Psi_{\mu}=\sum_{j} u_{\mu_{j}} \psi_{j}$ where $u_{\mu_{j}}=C_{\mu_{j}} / c$. Then, by making use of the just established relations

$$
\left(N \psi_{\mu}, N \psi_{p}\right)=\left\{\begin{array}{cc}
|c|^{2} & (\mu=p) \\
0 & (\mu \neq p)
\end{array}, \mu, p=1,2,3, \cdots\right.
$$

and of the fact that $N \psi_{\mu}$ belongs to $\Re$ for every $\psi_{\mu} \in\left\{\psi_{\mu}\right\}$, we have

$$
\begin{aligned}
\left(\Psi_{\mu}, \Psi_{p}\right) & =\sum_{j} u_{\mu j} \bar{u}_{p_{j}} \\
& =\sum_{j}\left(N \psi_{\mu}, \psi_{j}\right)\left(\overline{N \psi_{p}, \psi_{j}}\right) /|c|^{2} \\
& =\left(N \psi_{\mu}, N \psi_{p}\right) /|c|^{2} \\
& = \begin{cases}1 & (\mu=p) \\
0 & (\mu \neq p)\end{cases}
\end{aligned}
$$

In addition, it is clear that ( $1^{\prime}$ ) is expressed in the form (1).
Thus it remains only to prove that

$$
\sum_{j} u_{j \mu} \bar{u}_{j p}= \begin{cases}1 & (\mu=p)  \tag{4}\\ 0 & (\mu \neq p)\end{cases}
$$

and that $\left|u_{j j}\right| \neq 1$ for $j=1,2,3, \cdots$.
To prove the validity of these relations, we consider the adjoint operator $N^{*}$ of $N$. Then we have $N^{*} \varphi_{\nu}=\bar{\lambda}_{\nu} \varphi_{\nu}, N^{*}=\int_{G} \bar{z} d K(z)$ where $G$ denotes the complex $z$-plane, and $\left(N^{*} \psi_{\mu}, \psi_{j}\right)=\left(\overline{N \psi_{j}}, \psi_{\mu}\right)=\overline{C_{j \mu}}$. Accordingly, by the same reasoning as that used to establish the functionalrepresentation (1) of $N$ it can be verified without difficulty that

$$
N^{*}=\sum_{\nu} \bar{\lambda}_{\nu} \varphi_{\nu} \otimes L \varphi_{\nu}+\bar{c} \sum_{\mu} \Psi_{\mu}^{*} \otimes L_{\varphi_{\mu}}
$$

where $\Psi_{\mu}^{*}=\sum_{j} \bar{u}_{j \mu} \psi_{j}$, and that (4) is valid. Thus the matrix ( $u_{k j}$ ) associated with all the elements of $\left\{\psi_{\mu}\right\}$ is unitary. Furthermore it is seen that

$$
\begin{equation*}
\left|u_{j j}\right|=\left|C_{j j}\right| /|c|=\left|\left(N \psi_{j}, \psi_{j}\right)\right| / / \mid N \psi_{j} \|, j=1,2,3, \cdots, \tag{5}
\end{equation*}
$$

and that $\left\|N \psi_{j}\right\|^{2}=\sum_{\mu}\left|\left(N \psi_{j}, \psi_{\mu}\right)\right|^{2}$ in accordance with the Parseval identity and the fact that $N \psi_{j}$ belongs to $\Re$. On the other hand, it never occurs that $\left(N \psi_{j}, \psi_{\mu}\right)$ vanishes for every $\psi_{\mu}$ different from $\psi_{j}$; for otherwise $\psi_{j}$ would become an eigenelement of $N$, contrary to hypotheses. Hence $\left\|N \psi_{j}\right\|>\left|\left(N \psi_{j}, \psi_{j}\right)\right|$. By virtue of the application of this inequality to (5), we obtain $\left|u_{j j}\right|<1$ for $j=1,2,3, \cdots$.

With these results, the proof of the theorem is complete.
Remark 1. Since it is easily verified by means of (4) that

$$
\sum_{\mu}\left(h, \Psi_{\mu}\right) \Psi_{\mu}=\sum_{\mu}\left(h, \psi_{\mu}\right) \psi_{\mu}=h
$$

for every $h \in \mathfrak{R}$, the set $\left\{\Psi_{\mu}\right\}$ associated with $\left\{\psi_{\mu}\right\}$ is an orthonormal
set determining $\mathfrak{R}$; and moreover it is seen that the same result is true of $\left\{\Psi_{\mu}^{*}\right\}$.

Remark 2. It is found immediately from the method of the proof of Theorem A that, if the (one-dimensional or two-dimensional) measure of $\Delta(N)$ is zero, the second member in the right-hand side of (1) vanishes and $\left\{\varphi_{\nu}\right\}$ is a complete orthonormal set, and that, if, on the contrary, the point spectrum of $N$ is empty, $N$ is expressd by that second member in which the orthonormal set $\left\{\psi_{\mu}\right\}$ is complete.

Corollary A. If, in Theorem A, $f(z)$ is a function holomorphic on the closed domain $D\{z:|z| \leqq\|N\|\}$, then $\left\|f(N) \psi_{\mu}\right\|^{2}, \mu=1,2,3, \cdots$, assume the same value, which will be denoted by $\sigma^{\prime}$; and if, in addition, we choose arbitrarily a complex constant $c^{\prime}$ with absolute value $\sqrt{\sigma^{\prime}}$ and put $\Psi_{\mu}^{\prime}=\sum_{j} u_{\mu j}^{\prime} \psi_{j}$ where $u_{\mu j}^{\prime}=\left(f(N) \psi_{\mu}, \psi_{j}\right) / c^{\prime}$ and $\sum_{j}$ denotes the sum for all $\psi_{j} \in\left\{\psi_{\mu}\right\}$, then the equality

$$
f(N)=\sum_{\nu} f\left(\lambda_{\nu}\right) \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c^{\prime} \sum_{\mu} \Psi_{\mu}^{\prime} \otimes L_{\psi_{\mu}}
$$

holds on $\mathfrak{g}$ and the matrix ( $u_{k j}^{\prime}$ ) associated with all the elements of $\left\{\psi_{\mu}\right\}$ possesses the same characters as those of the matrix $\left(u_{k, j}\right)$ described in Theorem A.

Proof. Since, by definition, we have $f(N)=\int_{D} f(z) d K(z)$, which implies that the adjoint operator $f^{*}(N)$ of $f(N)$ is given by $f^{*}(N)$ $=\int_{D} \overline{f(z)} d K(z)$, and since, by hypotheses, $f(z)$ is holomorphic on $D$, there is no difficulty in showing that
$1^{\circ} f(N)$ is a bounded normal operator in $\mathfrak{S}$;
$2^{\circ}$ the point spectrum of $N$ is given by $\left\{f\left(\lambda_{\nu}\right)\right\}_{\nu=1,2,3}, \ldots$, and $\varphi_{\nu}$ is an eigenelement of $f(N)$ corresponding to the eigenvalue $f\left(\lambda_{\nu}\right)$;
$3^{\circ}$ the continuous spectrum of $f(N)$ also is given by the image of $\Delta(N)$ by $f(z)$.

Accordingly the present corollary is a direct consequence of Theorem A.

Correction to Sakuji Inoue: "Functional-Representations of Normal Operators in Hilbert Spaces and Their Applications" (Proc. Japan Acad., Vol. 37, No. 10, 614-618 (1961)).

Page 614, line 17 from bottom: read " $\sum_{\nu=1}^{\infty}$ " in place of " $\sum_{j=1}^{\infty}$ ".
Page 615, line 1: read " $b_{\mu}$ " in place of " $b \mu$ ".
Page 616, line 1: read " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\psi_{k}}(y)}$ " in place of " $\overline{L \psi_{k}(y)}$ and $\overline{L \varphi_{\nu}(y)}$ ".
Page 617, line 18: read "relations" in place of "velations".

