6. On the Functional-Representations of Normal Operators in Hilbert Spaces

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. KUNUG1, M.J.A., Jan. 12, 1962)

Let \mathfrak{H} be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let $\{\varphi_{\nu}\}_{\nu=1,2,3,\dots}$ and $\{\Psi_{\mu}\}_{\mu=1,2,3,\dots}$ both be incomplete orthonormal sets in \mathfrak{H} which have no element in common and together form a complete orthonormal set in that space; let $\{\lambda_{\nu}\}_{\nu=1,2,3,\dots}$ be an arbitrarily prescribed bounded sequence in the complex plane; let $\{u_{ij}\}$ be an infinite unitary matrix with $|u_{jj}| \neq 1$, $j=1,2,3,\dots$; let $\Psi_{\mu} = \sum_{j=1}^{\infty} u_{\mu j} \Psi_{j}$; let L_x be the continuous linear functional associated with an arbitrary $x \in \mathfrak{H}$; and let $y \otimes L_x$ be the operator defined by $(y \otimes L_x) z = (z, x) y$ for an arbitrarily given $y \in \mathfrak{H}$ and for every $z \in \mathfrak{H}$. Then, with respect to the operator N defined as

$$N = \sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}},$$

where c is an arbitrarily given complex constant, I have proved in Vol. 37, No. 10 (1961) of Proceedings of the Japan Academy that not only the right-hand side converges uniformly, but that also N is a bounded normal operator with point spectrum $\{\lambda_{\nu}\}$ in \mathfrak{H} , and have defined the expression of the right-hand side as "the functional-representation of N".

The purpose of this paper is to prove that conversely every bounded normal operator N in \mathfrak{H} is essentially expressible by such an infinite series of the continuous linear functionals associated with all the elements of a complete orthonormal set in \mathfrak{H} as described above.

Theorem A. Let N be a bounded normal operator in \mathfrak{H} ; let $\{\lambda_{\nu}\}_{\nu=1,2,3,\ldots}$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of N); let $\{\varphi_{\nu}\}_{\nu=1,2,3,\ldots}$ be an orthonormal set determining the subspace \mathfrak{M} determined by all the eigenelements of N, such that φ_{ν} is a normalized eigenelement corresponding to an arbitrary eigenvalue λ_{ν} of N; let $\{\Psi_{\mu}\}_{\mu=1,2,3,\ldots}$ be an orthonormal set determining the orthogonal complement \mathfrak{N} of \mathfrak{M} ; and let L_{f} be the continuous linear functional associated with any $f \in \mathfrak{H}$. Then $||N\Psi_{\mu}||^{2}$, $\mu=1,2,3,\cdots$, assume the same value, which will be denoted by σ ; and if we choose arbitrarily a complex constant c with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu} = \sum_{j} u_{\mu j} \Psi_{j}$, where $u_{\mu j} = (N\Psi_{\mu}, \Psi_{j})/c$ and $\sum_{j} P_{\mu}$

No. 1] On the Functional-Representations of Normal Operators in Hilbert Spaces 19

denotes the sum for all
$$\psi_j \in \{\psi_\mu\}$$
, the equality
(1) $N = \sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c \sum_{\mu} \Psi_{\mu} \otimes L_{\phi_{\mu}}$

holds on the domain \mathfrak{H} of N, and moreover the matrix (u_{kj}) associated with all the elements of $\{\psi_{\mu}\}$ is unitary and possesses the property $|u_{jj}| \neq 1$ for $j=1, 2, 3, \cdots$.

Proof. By hypotheses, $N\varphi_{\kappa} = \lambda_{\kappa}\varphi_{\kappa}, \kappa = 1, 2, 3, \cdots$; and in addition, $\sum_{\nu} \lambda_{\nu}\varphi_{\nu} \otimes L_{\varphi_{\nu}}(\varphi_{\kappa}) = \lambda_{\kappa}\varphi_{\kappa}, \kappa = 1, 2, 3, \cdots$. Since, on the other hand, any element g of \mathfrak{M} is expressed in the form $g = \sum_{\nu} (g, \varphi_{\nu})\varphi_{\nu}$, these results permit us to assert that the equality $N = \sum_{\nu} \lambda_{\nu}\varphi_{\nu} \otimes L_{\varphi_{\nu}}$ holds on \mathfrak{M} .

Now, let $\{K(z)\}$ be the complex spectral family associated with N, K_{ν} the eigenprojector corresponding to an arbitrary eigenvalue λ_{ν} of N, and $\Delta(N)$ the continuous spectrum of N. Then, since $N = \sum_{\nu}' \lambda_{\nu} K_{\nu} + \int_{\Delta(N)} z dK(z)$, where \sum_{ν}' denotes the sum for all distinct eigenvalues λ_{ν} in $\{\lambda_{\nu}\}$, and since $K_{\nu}\psi_{\mu}=0$ for every pair of $\mu, \nu, N\psi_{\mu}, \mu=1, 2, 3, \cdots$, belong to \Re . Putting $\Phi_{\mu} = \sum_{j} C_{\mu j}\psi_{j}$ where $C_{\mu j} = (N\psi_{\mu}, \psi_{j})$ and \sum_{i} denotes the sum for all $\psi_{j} \in \{\psi_{\mu}\}$, we have therefore

for every $\Psi_p \in \{\Psi_\mu\}$. This result leads us to the assertion that the equality $N = \sum_{\mu} \Phi_{\mu} \otimes L_{\phi_{\mu}}$ holds on \mathfrak{N} . Since, furthermore, any element $f \in \mathfrak{H}$ is uniquely expressed in the form f = g + h where $g \in \mathfrak{M}$ and $h \in \mathfrak{N}$, and since

$$\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(f) = \sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(g) = Ng$$

and

$$\sum_{\mu} \Phi_{\mu} \otimes L_{\psi_{\mu}}(f) = \sum_{\mu} \Phi_{\mu} \otimes L_{\psi_{\mu}}(h) = Nh,$$

we obtain

$$Nf = \sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}(f) + \sum_{\mu} \Phi_{\mu} \otimes L_{\phi_{\mu}}(f),$$

which shows that the equality (1') $N = \sum_{\lambda_{\nu}} \varphi_{\nu} \otimes L_{\varphi_{\nu}} +$

(1') $N = \sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + \sum_{\mu} \Phi_{\mu} \otimes L_{\phi_{\mu}}$

holds on \mathfrak{H} .

If we next denote by δ an arbitrary subset with non-zero measure of $\mathcal{L}(N), K(\delta)$ is a projector and hence the relation

$$(K(\delta)f, f') = \left\| K(\delta) \frac{f+f'}{2} \right\|^2 - \left\| K(\delta) \frac{f-f'}{2} \right\|^2 + i \left[\left\| K(\delta) \frac{f+if'}{2} \right\|^2 - \left\| K(\delta) \frac{f-if'}{2} \right\|$$

holds for every pair of $f, f' \in \mathfrak{H}$. Remembering that $K_{\nu} \psi_{\mu} = 0$ for

$$(2) \qquad (N\psi_{\mu}, N\psi_{j}) = \int_{d(N)} |z|^{2} d(K(z)\psi_{\mu}, \psi_{j})$$

$$= \int_{d(N)} |z|^{2} d\left[\left\| K(z) \frac{\psi_{\mu} + \psi_{j}}{2} \right\|^{2} - \left\| K(z) \frac{\psi_{\mu} - \psi_{j}}{2} \right\|^{2} \right]$$

$$+ i \int_{d(N)} |z|^{2} d\left[\left\| K(z) \frac{\psi_{\mu} + i\psi_{j}}{2} \right\|^{2} - \left\| K(z) \frac{\psi_{\mu} - i\psi_{j}}{2} \right\|^{2} \right].$$

On the other hand, since

$$(3) \qquad \zeta(\delta) \!\equiv \! \left\| K(\delta) \frac{\psi_{\mu} \!+\! \psi_{j}}{2} \right\|^{2} \!= \! \left\| K(\delta) \frac{\psi_{\mu} \!-\! \psi_{j}}{2} \right\|^{2} \!+\! \Re(K(\delta) \psi_{\mu}, \psi_{j}) \!\geq\! 0,$$

the set function ζ defined here is an extended real valued and nonnegative set function, defined on $\Delta(N)$ forming a (Boolean) ring, and such that $\zeta(0)=0$. Moreover the verification of the assertion that ζ is countably additive offers no difficulty. It is thus apparent that ζ is a measure. In consequence, by applying the mean value theorem for integrals to the equality

$$\int_{\mathcal{A}(N)} |z|^2 d \left\| K(z) \frac{\psi_{\mu} + \psi_{j}}{2} \right\|^2 = \int_{\mathcal{A}(N)} |z|^2 d \left[\left\| K(z) \frac{\psi_{\mu} - \psi_{j}}{2} \right\|^2 + \Re(K(z)\psi_{\mu}, \psi_{j}) \right]$$

deduced from (3), we find from the boundedness of N that

$$egin{aligned} &
ho \int_{\mathcal{A}(N)} d \left\| K(z) rac{\psi_{\mu} + \psi_{j}}{2}
ight\|^{2} &=
ho \int_{\mathcal{A}(N)} d \Big[\left\| K(z) rac{\psi_{\mu} - \psi_{j}}{2}
ight\|^{2} + rak{N} (K(z) \psi_{\mu}, \psi_{j}) \Big] \ &=
ho \int_{\mathcal{A}(N)} d \Big\| K(z) rac{\psi_{\mu} - \psi_{j}}{2} \Big\|^{2} +
ho \int_{\mathcal{A}(N)} d \big[rak{N} (K(z) \psi_{\mu}, \psi_{j}) \big], \end{aligned}$$

where ρ is a suitable positive constant such that $\inf_{z \in \mathcal{J}(N)} |z|^2 \leq \rho$ $\leq \sup_{z \in \mathcal{J}(N)} |z|^2 \leq ||N||^2$. As will be found from (2), this result shows that

$$\Re(N\psi_{\mu}, N\psi_{j}) = \rho \int_{\mathcal{A}(\mathcal{N})} d[\Re(K(z)\psi_{\mu}, \psi_{j})] \\ = \rho \Re(K(\mathcal{A}(N))\psi_{\mu}, \psi_{j}) \\ = \rho \Re(\psi_{\mu}, \psi_{j}) \\ = 0$$

for every pair of two distinct elements $\psi_{\mu}, \psi_{j} \in \{\psi_{\mu}\}$.

In the same manner as above, we find that $\Im(N\psi_{\mu}, N\psi_{j})=0$ for all distinct $\psi_{\mu}, \psi_{j} \in \{\psi_{\mu}\}$. Consequently the relation $(N\psi_{\mu}, N\psi_{j})=0$ holds for every pair of distinct $\psi_{\mu}, \psi_{j} \in \{\psi_{\mu}\}$.

Furthermore, by reasoning exactly like that applied to $\Re(N\psi_{\mu}, N\psi_{j})$, we can find that

whereas $(N(\psi_{\mu}+\psi_{j}), N(\psi_{\mu}-\psi_{j})) = ||N\psi_{\mu}||^{2} - ||N\psi_{j}||^{2}$. Hence all the $||N\psi_{\mu}||^{2}$ for $\mu=1, 2, 3, \cdots$ assume the same value, which will be denoted by σ .

We now choose arbitrarily a complex number c such that $|c|^2 = \sigma$ and put $\Psi_{\mu} = \sum_{j} u_{\mu j} \psi_{j}$ where $u_{\mu j} = C_{\mu j}/c$. Then, by making use of the just established relations

$$(N\psi_{\mu},N\psi_{p}) = \begin{cases} |c|^{2} \ (\mu = p) \\ 0 \ (\mu \neq p) \end{cases}$$
, $\mu, p = 1, 2, 3, \cdots$,

and of the fact that $N\psi_{\mu}$ belongs to \mathfrak{N} for every $\psi_{\mu} \in \{\psi_{\mu}\}$, we have $(\Psi_{\mu}, \Psi_{\mu}) = \sum u_{\mu,i} \tilde{u}_{\mu,i}$

$$egin{aligned} &=\sum_{j}(N\psi_{\mu},\psi_{j})(\overline{N\psi_{p}},\psi_{j})/|c|^{2}\ &=(N\psi_{\mu},N\psi_{p})/|c|^{2}\ &=(N\psi_{\mu},N\psi_{p})/|c|^{2}\ &=&iggl\{ 1\ (\mu\!=\!p)\ 0\ (\mu\!\pm\!p)iggr. \end{split}$$

In addition, it is clear that (1') is expressed in the form (1). Thus it remains only to prove that

(4)
$$\sum_{j} u_{j\mu} \tilde{u}_{jp} = \begin{cases} 1 & (\mu = p) \\ 0 & (\mu \neq p) \end{cases}$$

and that $|u_{jj}| \neq 1$ for $j=1, 2, 3, \cdots$.

To prove the validity of these relations, we consider the adjoint operator N^* of N. Then we have $N^*\varphi_{\nu} = \overline{\lambda}_{\nu}\varphi_{\nu}, N^* = \int \overline{z}dK(z)$ where Gdenotes the complex z-plane, and $(N^*\psi_{\mu}, \psi_{j}) = (\overline{N\psi_{j}}, \psi_{\mu}) = \overline{C}_{j\mu}$. Accordingly, by the same reasoning as that used to establish the functionalrepresentation (1) of N it can be verified without difficulty that

$$N^* = \sum_{\nu} \overline{\lambda}_{\nu} \varphi_{\nu} \otimes L \varphi_{\nu} + \overline{c} \sum_{\mu} \Psi^*_{\mu} \otimes L_{\phi_{\mu}},$$

where $\Psi_{\mu}^{*} = \sum_{j} \bar{u}_{j\mu} \psi_{j}$, and that (4) is valid. Thus the matrix (u_{kj}) associated with all the elements of $\{\psi_{\mu}\}$ is unitary. Furthermore it is seen that

(5) $|u_{jj}| = |C_{jj}|/|c| = |(N\psi_j, \psi_j)|/||N\psi_j||, j=1, 2, 3, \cdots,$

and that $||N\psi_j||^2 = \sum_{\mu} |(N\psi_j, \psi_{\mu})|^2$ in accordance with the Parseval identity and the fact that $N\psi_j$ belongs to \Re . On the other hand, it never occurs that $(N\psi_j, \psi_{\mu})$ vanishes for every ψ_{μ} different from ψ_j ; for otherwise ψ_j would become an eigenelement of N, contrary to hypotheses. Hence $||N\psi_j|| > |(N\psi_j, \psi_j)|$. By virtue of the application of this inequality to (5), we obtain $|u_{jj}| < 1$ for $j=1, 2, 3, \cdots$.

With these results, the proof of the theorem is complete.

Remark 1. Since it is easily verified by means of (4) that $\sum_{\mu} (h, \Psi_{\mu}) \Psi_{\mu} = \sum_{\mu} (h, \psi_{\mu}) \psi_{\mu} = h$

for every $h \in \mathfrak{N}$, the set $\{\Psi_{\mu}\}$ associated with $\{\Psi_{\mu}\}$ is an orthonormal

set determining \Re ; and moreover it is seen that the same result is true of $\{\Psi_{\mu}^{*}\}$.

Remark 2. It is found immediately from the method of the proof of Theorem A that, if the (one-dimensional or two-dimensional) measure of $\Delta(N)$ is zero, the second member in the right-hand side of (1) vanishes and $\{\varphi_{\nu}\}$ is a complete orthonormal set, and that, if, on the contrary, the point spectrum of N is empty, N is expressed by that second member in which the orthonormal set $\{\Psi_{\mu}\}$ is complete.

Corollary A. If, in Theorem A, f(z) is a function holomorphic on the closed domain $D\{z: |z| \leq ||N||\}$, then $||f(N)\psi_{\mu}||^2, \mu=1, 2, 3, \cdots$, assume the same value, which will be denoted by σ' ; and if, in addition, we choose arbitrarily a complex constant c' with absolute value $\sqrt{\sigma'}$ and put $\Psi'_{\mu} = \sum_{j} u'_{\mu j} \psi_{j}$ where $u'_{\mu j} = (f(N)\psi_{\mu}, \psi_{j})/c'$ and \sum_{j} denotes the sum for all $\psi_{j} \in \{\psi_{\mu}\}$, then the equality $f(N) = \sum_{\mu} f(\lambda_{\nu}) \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c' \sum_{\mu} \Psi'_{\mu} \otimes L_{\varphi_{\mu}}$

holds on \mathfrak{H} and the matrix (u'_{kj}) associated with all the elements of $\{\Psi_{\mu}\}$ possesses the same characters as those of the matrix (u_{kj}) described in Theorem A.

Proof. Since, by definition, we have $f(N) = \int_{D} f(z) dK(z)$, which implies that the adjoint operator $f^*(N)$ of f(N) is given by $f^*(N)$ $= \int_{D} \overline{f(z)} dK(z)$, and since, by hypotheses, f(z) is holomorphic on D, there is no difficulty in showing that

1° f(N) is a bounded normal operator in \mathfrak{H} ;

 2° the point spectrum of N is given by $\{f(\lambda_{\nu})\}_{\nu=1,2,3,...}$, and φ_{ν} is an eigenelement of f(N) corresponding to the eigenvalue $f(\lambda_{\nu})$;

 3° the continuous spectrum of f(N) also is given by the image of $\Delta(N)$ by f(z).

Accordingly the present corollary is a direct consequence of Theorem A.

Correction to Sakuji Inoue: "Functional-Representations of Normal Operators in Hilbert Spaces and Their Applications" (Proc. Japan Acad., Vol. 37, No. 10, 614-618 (1961)).

Page 614, line 17 from bottom: read " $\sum_{\nu=1}^{\infty}$ " in place of " $\sum_{j=1}^{\infty}$ ". Page 615, line 1: read " b_{μ} " in place of " b_{μ} ". Page 616, line 1: read " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\varphi_{\kappa}}(y)}$ " in place of " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\varphi_{\nu}}(y)}$ ". Page 617, line 18: read "relations" in place of "velations".