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Faculty of Education, Kumamoto University

(Comm. by K. KUNUGb M..A., Jan. 12, 1962)

Let 23 be the complex abstract Hilbert space which is complete,
separable, and infinite dimensional; let {}=.:,.... and {,},=.:.,... both
be incomplete orthonormal sets in $3 which have no element in
common and together form a complete orthonormal set in that space;
let {},__.:..... be an arbitrarily prescribed bounded sequence in the
complex plane; let [uJ be an infinite unitary matrix with

j--l, 2, 3,...; let ,--:]u,; let Lx be the continuous linear rune-
tional associated with an arbitrary xe(C); and let y(R)L be the
operator defined by (y(R)Lx)z=(z,x)y for an arbitrarily given
and for every z eO. Then, with respect to the operator Ndefined as

N:]<gL+c] ’(R)L,
where c is an arbitrarily given complex constant, I have proved in
Vol. 37, No. 10 (1961) of Proceedings of the Japan Academy that
not only the right-hand side converges uniformly, but that also N
is a bounded normal operator with point spectrum [} in 22, and
have defined the expression of the right-hand side as "the functional-
representation of N".

The purpose of this paper is to prove that conversely every
bounded normal operator N in ,9 is essentially expressible by such
an infinite series of the continuous linear functionals associated with
all the elements of a complete orthonormal set in .9 as described
above.

Theorem A. Let N be a bounded normal operator in 59; let
[}=...... be its point spectrum (inclusive of the multiplicity of
each eigenvalue of N); let [,}=...... be an orthonormal set deter-
mining the subspace determined by all the eigenelements of N,
such that is a normalized eigenelement corresponding to an arbi-
trary eigenvalue 2 of N; let [9,},:....... be an orthonormal set deter-
mining the orthogonal complement of W; and let L be the
continuous linear functional associated with any leg0. Then ]1Ng, I]
-1,2, 3,..., assume the same value, which will be denoted by a;
and if we choose arbitrarily a complex constant c with absolute
value / and put ,--]u,9.{, where u,--(N.,,4)/c and
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denotes the sum for all e[.}, the equality
( 1 ) N: 2"(R)L +c,
holds on the domain (C) of N, and moreover the matrix (u) associat-
ed with all the elements of [9,} is unitary and possesses the property
]u]l for j--l, 2, 3,....

Proof. By hypotheses, N--, -1, 2, 3,...; and in addition,
,2,(R)L()--2, --1, 2, 3,.... Since, on the other hand, any

element g of . is expressed in the form g-__(g, ), these results

permit us to assert that the equality N=,?(R)L, holds on .
Now, let {K(z)} be the complex spectral family associated with

N, K the eigenprojector corresponding to an arbitrary eigenvalue, of N, and /(N) the continuous spectrum of N. Then, since

N=,’2K--f zdK(z), where ,’ denotes the sum 2or all distinct

eigenvalues 2 in {2}, and since K.--0 for every pair of /,., N.,
/--1, 2, 3,... belong to . Putting q.-]C. where C.--(N.,
) and . denotes the sum for all .e{.}, we have therefore

=N
for every e{.}. This result leads us to the assertion that the
equality N--,.(R)L. holds on . Since, furthermore, any element

f e 23 is uniquely expressed in the form f=g+h where g e and h e,
and since ,,?(L f ,.(L (g) Ng

and

we obtain

]q.(Lo. (f) q.(Lo. (h)- Nh,

Nf 2F(L f + q.L. f),

which shows that the equality
(i’) N: 2L+ L
holds on .

If we next denote by an arbitrary subset with non-zero measure
of A(N), K() is a projector and hence the relation

(K()f, f’)--IIK() f+ f’ f’

holds for every pair of f,f’e. Remembering that K..--0 for
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every pair of t... we have therefore

(N,.Ny)--f z [2d(K(z).. )

2

On the other hand. since

the set function defined here is an extended real valued and non-
negative set function, defined on A(N) forming a (Boolean)ring, and
such that 5(0)-0. Moreover the verification of the assertion that
5 is countably additive offers no diculty. It is thus apparent that
5 is a measure. In consequence, by applying the mean value theorem
for integrals to the equality

deduced from (8), we find from the boundedness of N that

fIIz,+,1--.( [I ,-,1
C)

f f2

where p is a suitable ositive constant such that inf

su z]llN]l. As will be found from (2), this result shows that

(%,)
=0

for every air of two distinct elements e,
In the same manner as above, we find tha (N, N)-O for

all distinct ,e{,}. Consequently the relation (N, N)-O
holds for every air of distinct ,{}.

Purthermore, by reasoning exactly like that alied to (N,
N), we ean find that

st((%+), N(%-))

r(%+ , % )
0
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whereas (N(,q-.), N(,--j))-[[N, [[--[[ Nj[ [. Hence all the
I]N,II for Z-1,2,3,... assume the same value, which will be
denoted by a.

We now choose arbitrarily a complex number c such that c-a
and put ,--u, where u,=C,/c. Then, by making use of the

just established relations

tc (z=p)
(N., N;) 0 (Vp)’

z’p=l’2,3,’’’’

and of the fact that N, belongs to for every ,[,}, we have
(, )=

(N,+)(N, )/ c

(g., Np)/[ c [

-{ (=p)
0 (=p)"

In addition, it is clear that (1’) is expressed in the form (1).
Thus it remains only to prove that

() ’a’-- 0 ()
and that i@1 for -1,2,8,....

o rove the validity of these relations, we eonsider the adjoint

foerator N* of N. hen we have N*-i, N*- gK(z) where G

denotes the complex z-lane, and (N*,)-(N, )--C. Aeeord-
ingly, by the same reasoning as that used to establish the funetional-
representation (1) of N it ean be verified without dieulty that

where g-g, and that (4)is valid. hus the matrix ()
associated with all the elements of {} is unitary. Purthermore it
is seen that
(5) [uI-IC[/[cI-[(N,)[/I[N[[, j-l, 2, 3,.
and that []N.[[=](N,,)] in accordance with the Parseval

identity and the fact that N belongs to . 0n the other hand,
it never occurs that (N, ,) vanishes for every , different from
; for otherwise would become an eigenelement of N, contrary
to hypotheses. Hence [[N]]>](N,)[. By virtue of the appli-
cation of this inequality to (5), we obtain ]u]41 for j--l, 2, 3,....

With these results, the proof of the theorem is complete.
Remark 1. Since it is easily verified by means of (4) that

(h, ,),--- (h, ,)q,-- h

for every h e?, the set {,} associated with {,] is an orthonormal
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set determining ; and moreover it is seen that the same result is
true of [,*].

Remark 2. It is found immediately from the method of the
proof of Theorem A that, if the (one-dimensional or two-dimensional)
measure of z/(N) is zero, the second member in the right-hand side
of (1) vanishes and {} is a complete orthonormal set, and that, if
on the contrary, the point spectrum of N is empty, N is expressd by
that second member in which the orthonormal set {,} is complete.

Corollary A. If, in Theorem A, f(z) is a function holomorphic
on the closed domain D[z:
assume the same value, which will be denoted by ’; and if, in
addition, we choose arbitrarily a complex constant c’ with absolute
value / and put r,-.,
denotes the sum for all e{,}, then the equality

f(N)--f(2)(R)L +
holds on and the matrix (u) associated with all the elements of
{} possesses the same characters as those of the matrix (u.)
described in Theorem A.

Proof. Since, by definition, we have f(N)-ff(z)dK(z), which

implies that the adjoint operator f*(N) of f(N) is given by f*(N)

=Jf(z)gK(z), and since, by hypotheses, f(z) is holomorphic on D,

there is no difficulty in showing that
1 f(N) is a bounded normal operator in (C);
2 the point spectrum of N is given by {f()}=,,,..., and

is an eigenelement of f(N) corresponding to the eigenvalue f();
3 the continuous spectrum of f(N) also is given by the image

of z/(N) by f(z).
Accordingly the present corollary is a direct consequence of

Theorem A.

Correction to Sakuji Inoue: "Functional-Representations of Nor-
mal Operators in Hilbert Spaces and Their Applications" (Proc. Japan
Acad., Vol. 37, No. 10, 614-618 (1961)).

Page 614, line 17 from bottom: read " in place of " ".
=1 .=1

Page 615, line 1: read "bz" in place of "bz".
Page 616, line 1" read "L,,(y) and L(y)" in place of "L(y) and Lv,(y)".
Page 617, line 18: read "relations" in place of "velations ".


