24. Further Properties of Reduced Measure-Bend

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. Suetuna, M.J.A.., March 12, 1962)

1. Completion of a previous result. We shall be concerned with curves defined on the real line \boldsymbol{R} and situated in \boldsymbol{R}^{m}, where we assume $m \geqq 2$ unless stated otherwise. By sets, by themselves, we shall understand subsets of \boldsymbol{R}. Continuing our recent note [6], let us begin with a theorem which completes part (ii) of the theorem of [5] $\S 3$.

Theorem. Given a curve φ and a set E, suppose that $\Omega_{*}(\varphi ; M)$ vanishes for every countable set $M \subset E$. Then

$$
r(\varphi ; E)=\Omega_{*}(\varphi ; E) \leqq \Omega_{*}(\psi ; E)
$$

for each curve ψ which coincides on E with φ.
Proof. The lemma and the theorem of [6]§2 require respectively that $\Upsilon(\psi ; E) \leqq \Omega_{*}(\psi ; E)$ and $\Upsilon(\varphi ; E)=\Omega_{*}(\varphi ; E)$. But our hypothesis on the curve ψ clearly implies $\Upsilon(\varphi ; E)=\Upsilon(\psi ; E)$. Hence the result.

Remark. The above theorem has a counterpart in length theory, as follows. (The proof is not difficult and may be left to the reader.)

Given a curve φ and a set E, suppose that $L_{*}(\varphi ; M)=0$ holds for every countable set $M \subset E$. Then $\Xi(\varphi ; E)=L_{*}(\varphi ; E) \leqq L_{*}(\psi ; E)$ for each curve ψ which coincides on E with φ.

Here the space in which the two curves lie may exceptionally be of any dimension.
2. Another definition of reduced measure-bend. By the essential measure-bend of a curve φ over a set E, we shall mean the infimum of the measure-bend $\Omega_{*}(\psi ; E)$, where ψ is any curve which coincides on E with φ. The notation $\Omega_{0}(\varphi ; E)$ will be used for it. In terms of this quantity we shall now give a second definition to the notion of reduced measure-bend. Indeed the theorem of [4] $\S 2$ has the following analogue.

Theorem. Given a curve φ and a set E, represent E in any manner as the join of a sequence Δ of subsets and write $\gamma_{0}(\varphi ; E)$ for the infimum of the sum $\Omega_{0}(\varphi ; \Delta)$. Then $\Upsilon_{0}(\varphi ; E)=\Upsilon(\varphi ; E)$.

Proof. On account of the lemma of [6]§2 we have in the first place $\Upsilon(\varphi ; E)=\Upsilon(\psi ; E) \leqq \Omega_{*}(\psi ; E)$ for every curve ψ considered above. It ensues that $\gamma(\varphi ; E) \leqq \Omega_{0}(\varphi ; E)$, where we observe that E may be replaced by any other set. Therefore $r(\varphi ; E) \leqq r(\varphi ; \Delta) \leqq \Omega_{0}(\varphi ; \Delta)$ for every Δ, and from this we infer that $\Upsilon(\varphi ; E) \leqq \Upsilon_{0}(\varphi ; E)$. The deduc-
tion of the converse inequality will thus constitute the main part of the proof.

Clearly we need only verify the inequality $\gamma_{0}(\varphi ; E) \leqq \Omega(\varphi ; \Delta)$ for each Δ. Since $\Upsilon_{0}(\varphi ; E) \leqq \Upsilon_{0}(\varphi ; \Delta)$ as we easily find, this will follow if we show that $\Upsilon_{0}(\varphi ; X) \leqq \Omega(\varphi ; X)$ for each set X on which φ is straightenable.

Fixing such an X, let us define a set $T \subset \boldsymbol{R}$ as follows (cf. the final paragraph of [6]). A point t belongs to T iff t is a point of accumulation for X and further, given any open interval I containing t, the curve φ is unbounded on the intersection $I X$. Then T is a finite set. For, if not, there would exist for each natural number n a sequence of $2 n+1$ points $t_{1}<t_{2}<\cdots<t_{2 n+1}$ belonging to T. By definition of T we could then choose in the set X a sequence of $n+1$ points $u_{0}, u_{1}, \cdots, u_{n}$ such that $u_{i-1}<t_{2 i}<u_{i}$ for $i=1, \cdots, n$. It would follow at once that if we write $K_{i}=\left[u_{i-1}, u_{i}\right]$, then $\Omega\left(\varphi ; K_{i} X\right) \geqq \pi$ for each i. But this would imply

$$
\Omega(\varphi ; X) \geqq \Omega\left(\varphi ; K_{1} X\right)+\cdots+\Omega\left(\varphi ; K_{n} X\right) \geqq n \pi,
$$

which is impossible since n is arbitrary.
Let us now decompose the complement of the finite set T into a disjoint finite sequence Θ of endless intervals. In view of the obvious inequalities $\Upsilon_{0}(\varphi ; X) \leqq \Upsilon_{0}(\varphi ; X \Theta)$ and $\Omega(\varphi ; X \Theta) \leqq \Omega(\varphi ; X)$, our theorem will be established if we show that $\gamma_{0}(\varphi ; X A) \leqq \Omega(\varphi ; X A)$ for each interval A occurring in Θ. Representing A as the join of a non-overlapping sequence Φ of closed intervals, we find $\gamma_{0}(\varphi ; X A)$ $\leqq \gamma_{0}(\varphi ; X \Phi)$ and $\Omega(\varphi ; X \Phi) \leqq \Omega(\varphi ; X A)$, so that it is enough to prove $r_{0}(\varphi ; X J) \leqq \Omega(\varphi ; X J)$ for each closed interval $J \subset A$. But it follows from the definition of T, with the help of the Heine-Borel covering theorem, that φ is bounded on Y, where and subsequently Y is short for $X J$. Therefore, on account of the theorem of [5]§1, there is a straightenable curve ω coinciding on Y with φ. Now it only remains to ascertain that $Y_{0}(\omega ; Y) \leqq \Omega(\omega ; Y)$.

Consider the set H of all the points t at which $\Omega_{*}(\omega ;\{t\})>0$. Then H is countable since ω is straightenable. Accordingly $r_{0}(\omega ; H Y)$ vanishes by definition of Υ_{0}, and so we find, writing $Z=Y-H$ for short, that

$$
r_{0}(\omega ; Y)=\Upsilon_{0}(\omega ; Z) \leqq \Omega_{0}(\omega ; Z) \leqq \Omega_{*}(\omega ; Z)
$$

On the other hand, since $\Omega_{*}(\omega ;\{t\})$ plainly vanishes for every $t \in Z$, the theorem of $[6] \S 2$ shows that $\Omega_{*}(\omega ; Z) \leqq \Omega(\omega ; Z) \leqq \Omega(\omega ; Y)$. Hence we get finally $\gamma_{0}(\omega ; Y) \leqq \Omega(\omega ; Y)$, and the proof is complete.
3. A property of locally straightenable curves. Only part (i) of the following theorem will be necessary for our purpose in hand. On the other hand, part (ii) extends the proposition of [1] $\S 80$ and is at the same time closely connected with that of $[1] \$ 83$.

Theorem. Let γ be a direction curve (defined on \boldsymbol{R}) of a locally straightenable light curve φ. Then (i) at each point $t_{0} \in \boldsymbol{R}$ for which $\Omega_{*}\left(\varphi ;\left\{t_{0}\right\}\right)$ vanishes, the curve φ has a tangent direction equal to $\gamma\left(t_{0}\right)$. Again, (ii) if c is any right-hand [or left-hand] point of continuity of φ, the right-hand limit $\gamma(c+)$ [or the left-hand limit $\gamma(c-)]$ exists and φ possesses at c a right-hand [or left-hand] tangent direction equal to $\gamma(c+)$ [or to $\gamma(c-)$].

Remark. See $\S \S 44,42,77$ of [1] for the terminology.
Proof. re (i): Given any natural number n we can enclose the point t_{0}, by hypothesis, in the interior of a closed interval I_{n} such that $\Omega\left(\varphi ; I_{n}\right)<1 / n$. The curve φ being light, we then have $\varphi(I) \neq 0$ for every closed interval $I \subset I_{n}$ on account of [1]§60. It therefore follows from [1]§63 that $\varphi\left(I_{n}\right) \diamond \varphi(I)<1 / n$ for such I. Since n is arbitrary, this implies that φ possesses at t_{0} a tangent direction, which must then plainly coincide with $\gamma\left(t_{0}\right)$.
$r e$ (ii): To fix the ideas, suppose φ right-hand continuous at the point c. In view of $\S \S 31-32$ of [1] it is easy to associate with each $n=1,2, \cdots$ a closed interval J_{n} with left-hand extremity c and such that $\Omega\left(\varphi ; J_{n}\right)<1 / n$. As above we then find $\varphi(J) \neq 0$ and $\varphi(J) \diamond \varphi\left(J_{n}\right)$ $<1 / n$ for each closed interval $J \subset J_{n}$. From this we draw two consequences: firstly, φ has at c a right-hand tangent direction $\varphi^{R}(c)$ such that $\varphi^{R}(c) \diamond \varphi\left(J_{n}\right) \leqq 1 / n$ for every n; secondly, we have $\gamma(x) \diamond \varphi\left(J_{n}\right)$ $\leqq 1 / n$ for each n whenever x is an interior point of J_{n}. So that, by the triangular inequality (see [1]§22), we obtain $\gamma(x) \diamond \varphi^{R}(c) \leqq 2 / n$ for such x. Making $n \rightarrow+\infty$, we conclude that $\gamma(c+)$ exists and coincides with $\varphi^{R}(c)$. This establishes part (ii).
4. Expression of measure-bend as ordinary and spheric measurelengths. This may be stated as follows.

Theorem. Given a light curve φ and a set E of real numbers, let γ be any direction curve (defined on \boldsymbol{R}) of φ and suppose that $\Omega_{*}(\varphi ; M)$ vanishes for every countable subset M of E. Then we have $L_{*}(\gamma ; E)=\Lambda_{*}(\gamma ; E)=\Omega_{*}(\varphi ; E)$.
Proof. We have $\Lambda_{*}(\gamma ; E) \leqq \Omega_{*}(\varphi ; E)$ by the lemma of [5]§3 and it is obvious that $L_{*}(\gamma ; E) \leqq \Lambda_{*}(\gamma ; E)$. Hence our theorem will be established if we derive $L_{*}(\gamma ; E)=\Omega_{*}(\varphi ; E)$. Suppose E nonvoid and let M denote the family of all the open intervals with rational extremities and on which the curve φ is straightenable. Noting that M is a countably infinite family covering E, we arrange all the elements of \mathfrak{M} in any distinct sequence I_{1}, I_{2}, \cdots and write U_{n} $=I_{1} \smile \cdots \smile I_{n}$ for $n=1,2, \cdots$. It suffices to prove $L_{*}\left(\gamma ; E U_{n}\right)=$ $\Omega_{*}\left(\varphi ; E U_{n}\right)$ for each n, since these two quantities tend to the limits $L_{*}(\gamma ; E)$ and $\Omega_{*}(\varphi ; E)$ respectively as $n \rightarrow+\infty$. Now each U_{n} can clearly be decomposed into a finite disjoint sequence Δ_{n} of open
intervals, so that $L_{*}\left(\gamma ; E U_{n}\right)=L_{*}\left(\gamma ; E \Delta_{n}\right)$ and $\Omega_{*}\left(\varphi ; E U_{n}\right)=\Omega_{*}\left(\varphi ; E \Delta_{n}\right)$. Accordingly we need only show $L_{*}(\gamma ; E I)=\Omega_{*}(\varphi ; E I)$ for each interval I in Δ_{n}. But, since φ is light, we have $\Omega(\varphi ; I)=\Omega_{*}(\varphi ; I)$ by the theorem of $[2] \S 3$, while $\Omega_{*}(\varphi ; I) \leqq \Omega_{*}\left(\varphi ; U_{n}\right)<+\infty$ by definition of U_{n}. So that φ must be straightenable over I.

Arguing now as in $\S 2$ we find the existence of a finite disjoint sequence Θ of open intervals such that $I-[\Theta]$ is a finite set and that φ is bounded on every closed interval contained in $[\Theta]$. Then $\Omega_{*}(\varphi ; E I)=\Omega_{*}(\varphi ; E \Theta)$ by our hypothesis on the set E; while we also have $L_{*}(\gamma ; E I)=L_{*}(\gamma ; E \Theta)$ since, by the lemma of [5]§3 and the same hypothesis, $L_{*}(\gamma ;\{t\})$ vanishes whenever $t \in E$. Thus it only remains to examine the validity of $L_{*}\left(\gamma ; E I_{0}\right)=\Omega_{*}\left(\varphi ; E I_{0}\right)$ for each interval I_{0} in Θ. By change of parameter, however, this amounts to proving $L_{*}(\gamma ; E)=\Omega_{*}(\varphi ; E)$ under the additional assumption that φ is straightenable and locally bounded. Then φ is locally rectifiable in virtue of the lemma of [5]§1.

This being so, consider the set H of all the points of discontinuity for φ. Since H is countable, there exists by [1]§94 a non-decreasing continuous function $p(u)$ mapping \boldsymbol{R} onto itself and such that the inverse image $p^{-1}(t)$ of a point $t \in \boldsymbol{R}$ under p is non-degenerate and hence a closed interval when and only when $t \in H$. We now construct on \boldsymbol{R} a strictly increasing function $q(t)$ as follows. If $t \in \boldsymbol{R}-H$, we understand by $q(t)$ the point $p^{-1}(t)$. If on the other hand $t \in H$, we write $p^{-1}(t)=[a, b]$ and $c=(a+b) / 2$, and we define $q(t)$ to be the point a, b, or c according as

$$
\varphi(t-)=\varphi(t), \varphi(t+)=\varphi(t), \text { or } \varphi(t-) \neq \varphi(t) \neq \varphi(t+)
$$

respectively. (Note that the first two of these three cases exclude each other on account of discontinuity of φ at t.)

Without difficulty we then can determine uniquely a light continuous curve $\omega(u)$ by the requirements that $\omega(u)=\varphi(p(u))$ for each $u \in q[\boldsymbol{R}]$ and further that $\omega(u)$ be a linear function of u on each interval of arbitrary type disjoint from $q[\boldsymbol{R}]$. As may be verified at once, we then have $\Omega\left(\omega ; p^{-1}[D]\right)=\Omega(\varphi ; D)$ for any open set $D \subset \boldsymbol{R}$, and it follows in particular that ω is straightenable. It also follows that $\Omega_{*}\left(\omega ;\left\{u_{0}\right\}\right)=0$ whenever $p\left(u_{0}\right) \in E$. Indeed, if K is an open interval containing the point $p\left(u_{0}\right)$, then $p^{-1}[K]$ must be an open set containing u_{0}, and so

$$
\Omega_{*}\left(\omega ;\left\{u_{0}\right\}\right) \leqq \Omega\left(\omega ; p^{-1}[K]\right)=\Omega(\varphi ; K)
$$

But $\Omega_{*}\left(\varphi ;\left\{p\left(u_{0}\right)\right\}\right)=0$ and therefore we can make $\Omega(\varphi ; K)$ arbitrarily small by choosing K suitably. Hence the result.

As a consequence we find that $\Omega_{*}(\omega ; N)=0$ for every countable set $N \subset q[E]$. This, combined with the theorem of [6]§2, shows that $\Omega_{*}(\omega ; X)=r(\omega ; X)$ whenever $X \subset q[E]$. In particular we may take
for X the set $Q=q[E-H]$. Recalling now the definition of the curve ω and noting that q is a strictly increasing function, we get immediately $\Upsilon(\omega ; Q)=\Upsilon\left(\varphi ; E_{0}\right)$, where E_{0} is short for $E-H$. But the theorem of [6]§2, applied this time to the curve φ, yields us the equality $\Upsilon\left(\varphi ; E_{0}\right)=\Omega_{*}\left(\varphi ; E_{0}\right)$. We thus derive $\Omega_{*}(\varphi ; E)=\Omega_{*}(\omega ; Q)$; for the set $E-E_{0}$ is countable as subset of H.

Let $\eta(u)$ be a fixed right-hand direction curve of ω in what follows. This is plainly feasible since ω is light. In view of the relation $\Omega_{*}(\omega ; N)=0$ proved above it follows from part (i) of the theorem of the foregoing section that, at each point u_{1} of Q, the curve ω possesses a tangent direction equal to $\eta\left(u_{1}\right)$. On the other hand φ is continuous at all points of E_{0} and so, writing $t_{1}=p\left(u_{1}\right)$, we readily see that $\gamma\left(t_{1}\right)$, which is by hypothesis a derived direction of φ at t_{1}, must also be a derived direction of ω at u_{1}. Accordingly $\gamma\left(t_{1}\right)=\eta\left(u_{1}\right)$. We have thus shown that $\gamma(t)=\eta(q(t))$ for each $t \in E_{0}$. As a direct consequence we find that $\Xi(\gamma ; E)=\Xi\left(\gamma ; E_{0}\right)=\Xi(\eta ; Q)$.

Now $\Lambda_{*}(\eta ; X)=\Omega_{*}(\omega ; X)$ for every set $X \subset \boldsymbol{R}$ (and in particular for $X=Q$) by the lemma of [5]§3. But we know already that ω is straightenable and that $\Omega_{*}(\omega ; N)$ vanishes for countable sets $N \subset Q$. It ensues that η is rectifiable and moreover continuous at all points of Q, so that we deduce, using the theorem of [3]§4 and the lemma of [5]§2, that

$$
\Xi(\eta ; Q)=L_{*}(\eta ; Q)=\Lambda_{*}(\eta ; Q)=\Omega_{*}(\omega ; Q) .
$$

Similarly we get $\Xi(\gamma ; E)=L_{*}(\gamma ; E)$. Combining the last two relations with what has already been proved we are finally lead to $\Omega_{*}(\varphi ; E)$ $=L_{*}(\gamma ; E)$, which completes the proof.
5. Expression of reduced measure-bend as reduced measurelength. We are now prove the following result.

Theorem. Given a light curve φ and a set E, let γ be any direction curve (on \boldsymbol{R}) of φ and suppose that $\Omega_{*}(\varphi ;\{t\})$ is finite for every point t of E. (The latter condition is certainly fulfilled when φ is locally straightenable.) Then we have $\Xi(\gamma ; E)=\Upsilon(\varphi ; E)$.

Proof. Assuming E nonvoid as we may, we define for each $n=1,2, \cdots$ an open set U_{n} of real numbers in exactly the same way as at the beginning of the foregoing proof. Then, since E and γ are both outer Carathéodory measures, $\Xi\left(\gamma ; E U_{n}\right)$ and $\Upsilon\left(\varphi ; E U_{n}\right)$ tend as $n \rightarrow+\infty$ to the respective limits $\Xi(\gamma ; E)$ and $\Upsilon(\varphi ; E)$. Consequently it is enough to prove $\Xi\left(\gamma ; E U_{n}\right)=\gamma\left(\varphi ; E U_{n}\right)$ for each n.

The inequality $\Omega_{*}\left(\varphi ; U_{n}\right) \leqq \Omega\left(\varphi ; I_{1}\right)+\cdots+\Omega\left(\varphi ; I_{n}\right)$, where the intervals I_{1}, I_{2}, \cdots mean the same things as in $\S 4$, implies that $\Omega_{*}\left(\varphi ; U_{n}\right)$ $<+\infty$. If, therefore, we write K_{n} for the set of the points t of $E U_{n}$ such that $\Omega_{*}(\varphi ;\{t\})=0$, it is obvious that $E U_{n}-K_{n}$ is countable. It follows at once that $\Xi\left(\gamma ; E U_{n}\right)=\Xi\left(\gamma ; K_{n}\right)$ and $\Upsilon\left(\varphi ; E U_{n}\right)=\Upsilon\left(\varphi ; K_{n}\right)$.

Now $\gamma\left(\varphi ; K_{n}\right)=\Omega_{*}\left(\varphi ; K_{n}\right)$ by the theorem of $[6] \S 2$, while $E\left(\gamma ; K_{n}\right)$ $=L_{*}\left(\gamma ; K_{n}\right)$ by the remark of $\S 1$ and the lemma of [5]§3. Thus the proof reduces to showing $L_{*}\left(\gamma ; K_{n}\right)=\Omega_{*}\left(\varphi ; K_{n}\right)$. But this certainly holds in virtue of the preceding theorem.
6. Supplement. In connection with part (ii) of the theorem of $\S 3$ we can state the following result, the proof of which will be given in our forthcoming note.

Theorem. A light curve φ is spherically representable on both sides (see [1]§77) provided that it is locally straightenable.

References

[1] Ka. Iseki: On certain properties of parametric curves, Jour. Math. Soc. Japan, 12, 129-173 (1960).
[2] -: On the curvature of parametric curves, PJA, 37, 115-120 (1961).
[3] -: On some measure-theoretic results in curve geometry, PJA, 37, 426-431 (1961).
[4] -: Some results in Lebesgue geometry of curves, PJA, 37, 593-598 (1961).
[5] -: On the measure-bend of parametric curves, PJA, 38, 1-6 (1962).
[6] - -: On the reduced measure-bend of curves, PJA, 38, 37-42 (1962).

