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(Comm. by K. KUNUGI, M.J.A., March 12, 1962)

1. Concerning the characteristic initial value problem for the

non-linear wave equation
2, 2, 2,
(1) e B P
in two space variables, the author [1] proved the existence of a
generalized solution satisfying vanishing initial condition under the
assumption that i) f(x,u) is continuous in ¥, and ii) the inequality
Oo(x) < f(x, w)<Ow(x) holds in D, where
D={(, w); ve D, (@) <u<w(x)}.>

In this note we are concerned with singularities of the solution
of the characteristic initial value problem for (1), that is, we shall
show in §8 that for a certain class of functions f(x, ), the solution
of (1) with vanishing initial condition becomes infinite at a (finite)
point in D. The proof is similar to that given by J. B. Keller [2]
for the solution of the Dirichlet problem concerning the non-linear
elliptic equation du=f(u).

2. To give an explicit bound on the solution of (1), we shall
make use of the following comparison theorem.

THEOREM 1. Let f(x,u) and f(x,u) be continuous functions

defined for xzeD and —oolul+oo, and let the inequality f(x,u)
> f(x, u) hold for xeD and w>u. Further let J(x,u) be Lipschitz
continuous® with respect to u.

Assume that u(x) and uw(x) are generalized solutions in D of the
equations Ou= f(x, w), Ou=f(x, w) with initial conditions w(x)=¢(x),
u(@)=p(x) on 8y respectively, where ¢(0)>¢(0) and d¢/d2,>dp/2, on
Sy. Then the inequality u(x)>wu(x) holds in D.

For the proof, see Theorem 2.8 in [1].

3. We begin by considering the ordinary non-linear differential
equation of the second order

dv | 2 dv
—Z 427 =}
(2) o +r r (r,v) (1>0)

1) For the notation refer to S. Aizawa: Differentiability of the generalized solution
of a non-linear wave equation, Proc. Japan Acad., 38, 69-74 (1962).
2) | fl@, u)—S(@, uo) |[<L(M) | us—us | provided [wus|, |us|<M.




76 S. A1zawA [Vol. 38,

with initial conditions
(3) 2(0)=2,(0)=0.

LEMMA 1. Let h(r,v) be a mnom-negative continuous jfunction
defined for 0<r<-+o and —oo<v<-+oco. Further let h(r,v) be
Lipschitz continuous with respect to u. Then a unique solution of
(2) and (8) exists in the interval (0,a). If a is finite, then the solu-
tton v(r) tends to infinity as r—>a.

Proof. Rewriting (2) in the form

(4) (r*v,),=7r"h(r, v)
and integrating (4) from 0 to », we have
(5) v,(r) =73 f "wh(z, v(x)) de.

0
From (5) it follows that v,(r)>0. Hence v(r) is a non-decreasing
funetion of r, which proves our assertion. The uniqueness is obvious.

We say that a continuous function f(x,u) defined for xeD and
— oo <u< + oo satisfies Condition (G) in D if there exists a continuous
function h(r, v) defined for 0<r<+ o and — oo <v<+ oo and satisfy-
ing the following conditions:
i) h(r,v) is non-decreasing, that is, h(r,, v,)>h(r, v,) provided
ri=>7, and v, >v,,
ii) h(r,v) is Lipschitz continuous with respect to v,
iii) &(r,v)>0 for v>0,
h(r,v)>0 for »>0 and v>0,
iv)  f(w, w)>h(r, u), where we set r=(xl—ai—ad)?,
v) for any fixed >0,

fml:th('r, 2) dz]‘%dx< + o,

0 0
vi) D contains a point  whose (Lorentzian) distance », from the
origin is greater than

J_g_{m[{wh(ro, 2) dz]_§ dx+7,

for some r,>0, where v,=v(r,) and v(r) is the solution of (2) and (3).

Now we can prove the following theorem.

THEOREM 2. If f(x,u) satisfies Condition (G) in D, then the
solution of (1) with vanishing initial condition becomes infinite at
a (finite) point wn D.

Proof. It is obvious that if we set r:(xi—x%—m‘;’)* and Ai=2
in (2), the solution v(r)® of (2) and (8) becomes a unique solution®
of the equation Clv=h(r,v) with vanishing condition. Moreover, it

3) From iii) it follows that »(r) is not an identically zero function.
4) The uniqueness follows from Theorem 1.
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is clear from ii), iii) and Theorem 1 that v(r)>0. Hence it follows
from (5) (with 1=2) that v,(r)>0. Accordingly, v(r) is a monotone
increasing function of ». From (5), we have in virtue of i)

v, (r) < (r/3)h(r, v(r)).
Now, from (2)
(6) Ve 2 h(r, 0(r))/3.
Multiplying (6) by », and integrating from =, to », we have in virtue
of 1)

0. == 2 [ iz, o), (z) da

>2 f (o, o(@)v,(a) da=2 f h(re, 2) dz,

where v,=v(r,). He;me
v (r)'<y/ _3_[ f “hr, 2) dz]"%.

Integrating again from », to 7, we get

(7) fr——rogx/gfv[fwh(n, ?) dz:|—i‘e de.

By v) the integral in (7) convernges as v—>-+oo. Hence it follows
from (7) that v(r) becomes infinite at a finite value of ». Moreover,
by vi), there is a point in D at which v(r) becomes infinite. Thus
Theorem 1 shows that the solution of (1) with vanishing condition
becomes infinite at a point in D.

REMARK 1. If for any fixed r >0, h(r,v)=0(@"?), 2>0, as
v—>+ oo, then the integral in Condition (G), v) converges.

REMARK 2. If h(v) is a Lipschitz continuous function defined for
all values of v such that i) 2(v)>0 for »>0, and ii)

f”[th(z) dz]"* dw= oo,

0 0
then a unique solution v(r) of (2) and (8) exists, as is easily verified,
in the interval (0, ). In this case, if A(v)>f(®, u) for zeD and
v>u, we can take the solution v(r) as the function w(x) required in
the existence theorem in [1].
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