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1. Proof of a theorem. As heretofore we shall be concerned
with curves situated in a Euclidean space R of dimension m2.
Sets, by themselves, will always mean sets of real numbers unless
specified to the contrary. To prove the theorem stated at the end
of [4], we shall begin with a lemma in which the points of R will
be called vectors for convenience.

LEMMA. (i) We have (xoy)[x]<4[x--y for every distinct pair
of nonvanishing vectors x and y. (ii) Given a positive number
1/2 and four vectors p, q, p’, q’ such that p O, q O, and pqO,
write for short O-(pq)/4 and suppose that

IP’--P] O]P[, ]q’--q[_O]q[.
Then the two vectors p--q and p’--q’ are nonvanishing and the
angle between them is less than 8.

PROOF. re (i)" The identity Ix--yl=lxl+lyl--2[xl
where a-xy, implies that if a>/2, then
On the other hand we always have Ix-y I->_: xl sin a on account of
the identity [x-yl-(Ixlsina)-(Ixlcosa-ly[). When a/2, we
therefore find, in view of the well-known inequality sin a>2a, that
a[x[2]xl sin a21x--yl. This establishes (i).

re (ii)" Write w-p-q and w’-p’--q’, so that w@0 since pqO.
Part (i) proved already implies O iPl < [w[ and O lql < wl. Hence

This, united with the evident relation [w[]w’[+[p’-p]+]q’-q],
gives w’l >(1-2s)]wl:> 0, so that w’ cannot vanish. Putting now
for brevity 2-(ww’)/4 and using (i) again, we find further

2]w] ]w--w’l [if--p] + ]q’--q]
Sinee w@0, it follows that 2<2, Q. E. D.

THEOREM. A light curve 9 is spherically representable on both
sides provided that it is locally straightenable.

PROOF. We can associate with each point aeR a positive number
(depending on a) such that (t)@9(a) whenever a<ta+O. For

otherwise there would exist a strictly decreasing sequence of points
t > t.> tending to a and such that (t,)--9(a) for each n= 1, 2,....
Consider now the interval K,--[t,+, t, for each n. Then the curve
9, which is light by hypothesis, could not be constant on K,, so that
9(9; K,)= on account of [160. In view of superadditivity of
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bend (see [131) this contradicts the local straightenableness of .
This being premised, let us suppose, in order to prove the

lemma, that has no right-hand tangent direction ([177)at a
fixed point c of R. As we see at once, then possesses at c at
least two right-hand derived directions ([173), say a and ft. This
implies that in each open interval with left-hand extremity c there
are three points cc.c such that the vectors p’, q’, r’ defined by

are all nonvanishing and furthermore the angles p’a, q’fl, r’a
are all less than 8s, where is short for (afl)/32. If we now
write p- P’Ia, q-- q’ fl, r- r’]a, it follows at once that

Similarly we get 4]q’--ql e(afl)lq[ and 41r’--rl z(afl)lrl. But
here afl-pq-qr, and so we deduce from the above lemma that

p’q’r’, (q--p)(q’--p’)8e, (r--q)(r’--q’)8.
The latter appraisals, conjointly with the triangular inequality

for angles (see [lJ22), readily leads to
1 (q’-p’)(r’-q’)(q-p)(r--q)-.16z.

Let us now estimate the angle 2-(q--p)(r--q). If p-r, then
obviously ,-zafl. Suppose therefore that pr. Then the
triangular equality of [1]23 requires that
2 ,-(q--p)(r--p)-+-(q--r)(p--r).
We distinguish two cases according as ]P’I < r’] or [P’I [r’[. In
the first case we clearly have p(r--p)--O, so that

>= p q- Z,
where we have applied once more the triangular equality. But the
same result 2 afl must hold in the second case also, since the
right-hand side of (2) is symmetric with respect to the letters p and
r. In virtue of (1) it follows now at once that

9(F; {c, c, c})--(q’--p’)(r’--q’)>(a fl)/2.
This being so, consider the closed interval I0-[c, c-t-lJ. The

last inequality enables us to choose in Io a disjoint infinite sequence
A of closed intervals such that 9(; I)>(afl)/2 for every interval I
in /. Then 9(; I0):>tg(; z/)-+ by superadditivity of bend. This
contradicts local straightenableness of . We have thus proved that

is spherically representable on the right. By symmetry ( must
be so on the left too, and the theorem is established.

REMARK. The above theorem completes the proposition of
[180. As for the method of proof of our theorem, we may
observe the following. Let U be the union of all the open intervals
on which is rectifiable. Arguing as in the final paragraph of [3
we fin=l that R--U is a countable set. Consider any point t of U.
If is continuous on the right at t, i.e. if (t+)-((t), it follows
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from part (ii) of the theorem of [43 that ( has at t a right-hand
tangent direction. If on the other hand (?(t+):(t), the direction
of (t+)--(t) is clearly the right-hand tangent direction of at t.
Similarly we see that has at t a left-hand tangent direction. The
same argument fails, however, when t does not belong to the set U.
For then (t+) does not necessarily exist, neither does (t--).

2. Hausdorff measure.bend of a curve. We defined in [2]5
a set-funetion w(X)for all subsets X of the space R. With the
help of w we shall now introduce a geometric quantity ealled Haus-
dorf measure-bend of a curve. Given a curve and a set E of
real numbers, let be a positive number and express E arbitrarily
as the join of a sequence zl of sets with diameters less than e.
Noting that fZ is situated in R", we write for short 0(M):w([M])
for every linear set M and understand by II(; E) the infimum of
0(z/) for all sequenees z/ of the above deseription. As -->0, this
infimum plainly tends in a non-decreasing manner to a limit, which will
be termed Hausdorff measure-bend of the curve over the set E
and denoted by //(; E). We find easily that (i) if E is covered by
a sequence 9 of linear sets, then //(; E)H(; 69); and that (ii) if

M and M. are a pair of nonvoid linear sets with distance exceeding
e, then H(; M M):/L(; M)+/L(fZ; M). It follows at once from
these two relations that the quantity //(; E), qua function of E, is
an outer CarathSodory measure which vanishes for countable sets.

The following inequality between the Ha.usdorff and reduced
measure-bends will sometimes be useful to us hereafter.

THEOREM. Given and E as above, we have H(; E)2"(;E).
PROOF. Let A and ) retain the same meanings as above, 0

being fixed. We find by the lemma of _24 that the reduced
measure-bend T(; E) is the infimum, for all A, of the sum /2(; A).
On the other hand )(M)_t?(; M) for any linear set M, as may
easily be deduced from the definition ([25) of the function w(X).
Hence )(A)t9(; A) for each A, and it follows that

//(; E)= inf )(A)inf/2(; A)=/’(; E).
Making s-0, we get //(; E)=lim H(; E)/’((?; E), and the proof
is complete.

REMARK. It is easy to construct a continuous plane curve 0(t)
such that II(o;I)F(o;I) for every closed interval /. For this
purpose consider a real-valued continuous function Fo(t) which is
defined on R and nowhere differentiable. Then Fo cannot be VBG
on any closed interval, as it follows immediately from a remark (in
small print) on p. 234 of Saks [5. We define now o(t)=(Fo(t), 0}
for every t and readily see that o([M)=0 for every linear set M.
Consequently, by definition, the Hausdorff measure-bend of o vanishes
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identically. We proceed to prove that, on the other hand,/’(0; I)
for each closed interval /. Let us express I in any manner as the
join of a sequence z/ of its subsets. It is clearly sufficient to show
that there exists, among the sets composing z/, one at least on which
the curve fro has bend ,. Suppose on the contrary that /2((f0; E)
for each set E in z/. The function Fo must then be monotone (non-
decreasing or non-increasing) over each E; for otherwise we could
choose in E a triple of points tt.t so as fulfil either

Fo(t) < Fo(t) > Fo(t) or Fo(t) > Fo(t) < Fo(t),
and it ensues directly that 9(o; E)9(o; Its, t., t})--, which is in-
compatible with our assumption. Since F0 is bounded on I as a con-
tinuous function, monotonity of Fo on E implies that it is VB on
E. This being true for each E in z/, we conclude that Fo is VBG
on /, contrary to what has already been said above. Thus o has
the announced property ’(o; I):>. By the way, it follows further
at once from this that (0; J)--- for every interval J (closed
or not).

3. A relation between bend and the function o. The bend of
a curve over a set E is sometimes expressible in the form 0(E),
where 0 has the same meaning as in 2. To obtain a sufficient
condition for this to take place, we prove first the following

LEMMA. Given in R a finite sequence d--(Xo, X,. ., x of
points, where n2, suppose tla$ p-x--x_-=O for every i-1,-.., n
and $hat a-pp+...+p_op/2. The is dis$inc$ and we
have o(X)-- for the set X={xo, x,..., x}.

PROOF. Throughout the .proof the letters j, a, b, c will assume
the values 0, 1,..., n. To see the distinctness of z/, consider any
curve $(t) such that $(j)-x for every j. If there were a pair of values
of a, b such that a<b and x-x, we should find at once, taking into
account the evident relation ba+2, that

a-/2(; [0, 1,..., n})tg(; {a, a+ 1, b})-- ,
which is a contradiction. This proves z/ distinct.

A distinct triple (x,x,x} of points of X will for the moment
be termed compatible with the sequence z/ iff either ab<c or

cba. Consider now any permutation of A, say A’--(yo, y,..., y},
and choose a curve (t) such that V(j)-.y for every 3". The equality
o(X)-a will plainly follow if we show that fl-tg(]; {0, 1,..., n}):>a.
For this purpose let us assume in the first place that the triple
(Yo, Y, Y} is incompatible with z/. Then, writing yo-x, y--x, and
y-x, we find that the indices a, b, c must satisfy one of the following
four relations:

ac<b, b<a<c, b<c<a, c<a<b.
If a<c<b holds, consider the obvious relation
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9(7; [0, 1,
Here we have the inequality (x--x)(x--x)(x--x)(x--x) on
account of the triangular equality of [123. But the last angle,
being equal to 9($; {a, c, b}), cannot exceed a. It follows that

fl2(V; {0, 1, 2})=--aa.
Of course the same result fla may be deduced similarly in each
of the remaining three cases b< a< c, etc.

We thus have fl:>a whenever <Y0, Y, Y} is incompatible with A.
But we can clearly replace, in this statement, the triple (Y0, Y,
by any triple 6-<y, y+, y+}, where jn--2. Accordingly
must hold whenever there exists a 6 which is incompatible with A.
It only remains to examine the case in which every . is compatible
with A. But evidently A’--<yo, y,,..., yn} then coincides either with
A or with A reversed, i.e. the sequence (x,,x_,...,Xo}; so that
coincides with a. This establishes the assertion.

THEOREM. Given a curve 9 and a set E, suppose that 9(9; E)
7v/2 and write as before (M)--w(9[M) for each set M. Then we

have q(E)- /2(9; E).
PROOF. It being obvious that (E)/2(; E), we need only ex-

amine the converse inequality. Supposing 9(9; E)0 as we may,

consider any finite set SE for which 9(; S)>0. Since tg(; E) is the
supremum of /2((?; S) for all such S, it is enough to prove 9((; S)
)(E) for each S. We can plainly choose in S a finite sequence of
points to< t<.-. < t, (n:>2) in such a way that (t_)(t) for every

i=1,..., n and further that 9(V; T)--9(V; S), where we write for
short T-{to, t,,..., t}. But 9(; S)/2(; E)zv/2 by hypothesis, and
hence our lemma requires that /2(;; T)--(T). Consequently we have
9(; S)--(T)(E), which completes the proof.

4. Countable and Borel straightenableness of a curve. We
shall call a curve V countably straightenable on a set E iff E admits
an expression as the union of a sequence (countable, needless to say)
of sets on each of which is straightenable. When such a sequence
can especially be so chosen that each set X composing it has the
form X--BE, where B is a suitable Borel set (depending on X),
will be termed Borel-straightenable (or B-straightenable) on E. It
may be shown that each of the following three conditions is suffi-
cient for to be Borel-straightenable on E: (i) is continuous on

E and countably straightenable on E; (ii) 9 is locally straightenable;

(iii) 2.(;{t})<-t-o whenever teE. Plainly condition (ii) implies
condition (iii).

As we may observe, condition (i) is the analogue, in bend theory,
of a condition of 21 for Borel rectifiability of a curve over a set.
But (ii) and (iii) also have their counterparts in length theory, as
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follows’ a curve is Borel-rectifiable on a set E whenever (a)it is
locally rectifiable or, more generally, (b) its measure-length is finite
for every singletonic subset of E. (Here the space in which the curve
is situated may exceptionally be of arbitrary dimension.) The proof
is immediate.

Owing to space limitation the relation between the Hausclorff
and reduced measure-bends of a curve has not been fully discussed in
the present article. As a typical one of the results to be established
in this connection in our forthcoming note we may mention the
following (cf. the remark of 2)" If a curve situated in Rof
dimension n2 is Borel-straightenable on a set E, it is necessarily

Borel-rectifiable on the same set and we further have the equality
H(; E)--’((Z; E).
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