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It is very well known that A.N. Kolmogorov [2] was the first
to construct an example of a function f(x)eL(O, 2) whose Fourier-
Lebesgue trigonometric series diverges almost everywhere. Later
he constructed a Fourier-Lebesgue series which diverges unboundedly
everywhere [3. But the Fourier series given by Kolmogorov is
not a Fourier series of a function f(x)eL log+L, since its conjugate
series is not a Fourier series. 1) The next step forward was made
by G. H. Hardy and W.W. Rogosinski [1. They constructed an
almost everywhere divergent Fourier series whose conjugate series
is also a Fourier series.

In another direction, K. Zeller [8 gave a method to construct a
Fourier series which converges on an arbitrary set E(0, 2z) of the
type F (denumerable sum of closed sets) and diverges unboundedly
on E,=[0, 2z)--E. Recently L. V. Taikov [6 constructed a Fourier
series which converges on Ec[0,2z) of the type F and diverges
unboundedly everywhere on EI--[_O, 2z)--E such that the conjugate
series is also a Fourier series.

It is natural to inquire whether the Fourier series of a function
f(x) belonging to L2(0, 2z) converges almost everywhere. This was
conjectured, by N.N. Lusin in the positive sense some forty-five
years ago,3) but it has neither been proved nor been disproved. To
attack this difficult problem, it is of interest to observe the maximum
speed at which a Fourier series may diverge unboundedly almost
everywhere. If there exists a Fourier series which diverges very fast,
we might think that the Lusin’s conjecture could not be true. Concern-
ing to this point, A. Zygmund (10, p. 308) conjectured that for any
sequence of positive numbers n--0(1og n), n-+oo, there is an feL
such that at almost every point ;r we have Sn(X; f),, for infinitely
many n, where S,(x; f) denotes the nth partial sum of the Fourier

1) See, for example, [10] p. 308 and [7] Theorem 9. But, the series considered
in [7] {}3 is different from the original series defined by Kolmogorov, since the function
Cn(x) defined in [7] {}3 is not a F6jer kernel. Each function f(x) of the class denoted
by L log L is such that If(x)] log If(x)] L(0, 2zr).

2) In the English translation of [6]: Soviet Math., {}, No. 2, p. 347, it is stated that
Hardy and Rogosinski constructed an everywhere divergent Fourier series whose conjugate
series is also a Fourier series, but it has been wrongly translated, cf. also [5].

3) See [4] p. 219.
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series of f(x). The purpose of this paper is to present a function
f(x) whose Fourier-Lebesgue trigonometric series diverges unbounded-
ly at every point with the scale of o(log log n), such that the conjugate
series of the Fourier of f(x) is also a Fourier series. From this result
it is natural to conjecture that there exists a function f(x)eL(0,2)
with f(x) eL(O, 2) and If(x) llog/log/lf(x) eL(0, 2=) such that the
Fourier series of f(x) diverges everywhere in [0, 2).

LEMMA 1. Let M0. Then for each trigonometric polynomial
ao1 T(x)--- q- =la COS kxq-b sin kx,

there exists a trigonometric polynomial of the form

2 t(x)-- c cos kx+d sin kx,

where Q>M, such that, for each xe [0, 2z),
(3) ]t(x) l=<]T(x)l, ](x)[_-<lT(

4 1--sup Sk(x-; T)l_suplS(x; t-)lsup{ISk(x; t)l+lS(x;)l },
8 k

5 1 sup S(x; T) I_ sup Sn(x; t)I,

where t(x) and T(x) are respectively the conjugate functions of f(x)
and T(x).
Lemma 1 is due to L.V. Taikov [6.) In what follows we shall
denote, by K1, K2,..., some positive constants.

LEMMA 2. There is a sequence of non-negative trigonometric
polynomials F,F.,...,F,... of orders ,,..., with constant
term 1 and having the following properties. With each n we can
associate a number An-g log n, a set En-- 0, 4z(n--/n )/(2n+ 1)
[0,2z), and an integer n such that

(ii) for each eE, there is an integer ] satisfying

20nk--k(xn)2OK-nc"-+ for sufficiently large n, and such
that
( 6 S(x; Fn) > An- KI log n> K3 log log/,
for sufficiently large n.

It is sufficient to prove (6) and to estimate the value of k; and
we omit further details of the proof which have been given in [10
pp. 310-311. We now follow the details in [9 pp. 175-179, in which
the method is different from the argument given in [10 p. 313

<__1 should read4) See Lemma 2 in [6]. There is a slip in p. 784, where cospxl=
2

cos pxl<
1 1

supl S(x" T)] in formula (2) of [6] by
1 =- and we have to replace --8- sup Sk(x" t) in our formula (4). Our formula (5) has been established in [6], p. 784.
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which depends on the theory of distribution. In the first place, we
need to give a precise estimate of the value of =n which is defined
in [9, p. 176. Writing K(t) for the ruth Fjer kernel of t:

1 [sin( 2
(7) K(t)-- 2(m+ l)

we define, as in [9 p. 176,

(8) F(x) (x)+@(x)= K{(2n+ 1)x} +. 1 Km(x_x)
n+l =0

where x,--2i/(2n+ 1), M__< moKnl K..., and the numbers .mj will be
defined later. We now set (x)=K{(2n+l)x}>=n, for xeI,=(xi--3,
xi+3),i=l, 2,...,2n. Taking m--mo=M=2On, t=(2n+l)x, we have

K(t)--2(m+l) -- {sin( m+(m+l)t 2
(9) snt

}2 (m+)

_
re+l> m+l>n,

(m+)t tt 2 20

for 0K(m+l)< and 0Kx< z So it is sufficient to
2 2 20n(n+ 1)
1take 3-20n, for sufficiently large n. We now write, as in [9

p. 178, x;+--x=4=O/(2n+l). Then xeI[+I+ if and only if

0e ,- + +,1- where I--(+&.--), j=0,...,2.

1 1
This means -- >. We roeeed to estimate the

4 80 820

values of ,ONjN--, which are defined in [9 . 178-179.
his eorresonds to the following eases:

(a) o ,-, (b) o (e) 0 ,-.
Prom eases (a)and (e), we obtain

(lO) ,}m+ (/) ao.
(1/ao) m+

he ease (b) can be decomposed into:

.12

In eases () and (r), 40 belongs to either , or ,,
this gives

<m + 160 nL()
_ - and
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It remains to consider the case (). Following the argument in [9
p. 179, we have

(12) m_m-- 320n.m (1+ 320 )-- -n m.Knm.
Since we may take m+--2m+l, and therefore we have the estimate:

(13) mKnmoK-n’-z.2On, j=0, 1,. ., [n--.
1If xe(I+I+), then the value k-k(x, n) is defined bymkm+.

This means log log k<K log n, for sufficiently large n, and therefore
we obtain

[-

(14) S(F; x)>K log n>K log log k, x (I+I+),
=0

2n1 I.(15) S(Fn; x)-S(F; x)- Son(Fn; x) n, x

The inequality (6) then follows immediately from (14) and (15).
THEOREM 1. Given any sequence of positive numbers p

o(log log n), n, there exists a function f(x) with conjugate series
being a Fourier series, such that at every point x, Sn(x; f)>p, for
infinitely many n.

Proof. We first take a trigonometric polynomial tn(X) obtained
from F(x) as in Lemma 1, so that there is no overlapping of terms
occured in the following trigonometric series:

t(x)= 1 [K--ze0::--z:++p()]
(16) Bn n=l B = (a cos jx+b. sin

where the constants B, %, b will be defined later. This means

(17) 20K-n(n- )+ +P(n) P(n+ 1),
(18) P(n+l)--P(n) K$-n(-)+.
It is sufficient to take

< e’z < e ( N),

for sueiently large . So we may take P() equals to the integral

art of e’: P()--[e’. We may assume, without loss of generality,
that p/log log decreases steadily to ero. hen we set B such
that

1 > 16p(20)
B K lo lo

for all values of -(, ) such that
(21) 20+P()<-k(, )<P()+2OK-4;’-*.
It follows that
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(22) 16pE0n/e(n) <
K8 log log {20n+ P(n)} Bn"

It is then suffiicient to take

(23) Bn---- K3 log log 20n
16p0

which increases monotonically to infinity, as n.
Next, let us define ni and

(24) f(x) ; tn(x)/Bn
i--0

so that I/B<. From Lemma 1 and Lemma 2, we see that

f(x)L(0,2), and the series (24) has infinitely many blocks of non-
overlapping trigonometric polynomials, such that

1 S(x;t) 1 1 S(x;Tn)[S(x; f)>
2 B 2 8 B

> K log log k. 16p

K log log k
p’

for infinitely may k satisfying

(26) k P(n)-- [e.
It remains to show that f(x)eL(O, 2=). By Lemma 1, it follows that

,.[ff(x) dxftn(x) dx/Bn

i=0
Hence f(x)L(O, 2). This completes the proof of Theorem 1. The
following theorem is a direct consequence of above Theorem 1 (el.
also E53)"

TEOREM 2. Given any sequence of positive numbers p=
o(]og log n), n, there exists a Fourier series belonging to the class
H, such that at every point x [0, 2), S(x, f) p for infinitely many n.

Added in Proof. The author is indebted to Prof. P. L. Ul’yanov
for pointing out a mistake during the preparation of this paper.
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