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(Comm. by K. KUNUGI, M.J.A., July 12, 1962)

1. Introduction. In quantum field theory we must consider
the Hilbert space having non-countable bases which corresponds to a
sequence of non-negative integers (n, 7, - *).

Since we can construct one-to-one mapping from the set of
the sequences (7, %y --) onto the points in [0,1] interval [8], we
can identify these bases to [0,1] interval.

Let 7 denote a point in [0, 1] interval and let +r, be the element
of the Hilbert space which corresponds to y. The element of this

Hilbert space is usually represented by the formulae f Cop,dp(r) and
ZCNr”, in [8], [4] and [6], where C,, C, are constants, and du(r)

is a measure on [0,1].

By single du(y), however, we cannot represent every element of
this Hilbert space. That is to say, by a continuous measure du(y),
we cannot represent the element of the second form. On the other
hand by the second form, we cannot represent the element of the
first form.

In this paper we take a Lebesgue measure dm(y) and represent
each element of the Hilbert space by the unified single expression

f (C,+C!45,) dm(r) using generalized distributions [7].

Our method of representation uses a L*-space’s closure. But our
topology is weaker than L3-topology.

2. New topology defined in L2[0,1].

Lemma 1. There is a one-to-one correspondence between the
sequence of non-negative integers (n,, Ny, -+ +) and the point of interval
[0,1]. [8]

Let’s consider the corresponding interval [0,1]. Let L%0,1]
denote the space of functions which are defined in the interval [0, 1]
and belong to L2

Let p,,.,(x) denote the function

0 (x)z{o for |x—x,|=d/n

e kn exp {—(3/n)*/((9/n)*—|x—u,|)}/o for |x—um,|<d/n,
where 6 is a positive constant and %k is a constant which satisfies
the following equality: % f exp {—1/1—2®)}dx=1.

|zl <1
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In the space L*[0,1], we introduce the new topology by the
following neighbourhoods:

Cgisup| [T [1R6(0) | Rop(t) [} dtds | <e,

0

~

sup | [ [ (1R g(t) = | Ry |} dtds | <,

sup | [ [ {IRp(0) 1P~ R_y(0) [P} dtds | <,

0

sup| [ [ (1% o) P~ Ry [*) deds | <,
U(p)=

sup| [ ["{1 3,00 —| 8.4(0) ) dtds | <,
sup| [ [ {1800 =] .90 |} deds | <,

sup | [~ [ {19-9(8) | 3-4(®) ') dtds | <,

L osw| [T [ U8 w0~ 840 1) dtds | <s

where R, o(t)={] o(t)+ () 12+ (p(O) + ¢(t))/2}/2,
R_o(t)={] o)+ 0@) /2~ (p(t)+¢(¢))/2}/2,
S o))={] ot)—9(0) |12+ (o) — @)/ (2D}/2,
J-o®)={(p(t) —())/(20)—| o(t) —¢(t) |/2}/2.
Lemma 2. The space L?[0,1] is a Hausdorff space.
Proof. It is evident that the axioms (A) +eU.(y) and (B)

Uoin er,oy (WS U, (W) N U () are satisfied.
We see also that the following inequality is satisfied; for ¢, e U, (),

2 € U‘z(¢1);
ffs{lﬂtsoz(t)lz—lﬂt«k(t)ﬁ}dtds]

=| [ [ Uy =1 Rop0) 1) dtas|

+ [T [ U e =100 ) atds |

0
< & +¢&,
By the same way, we can prove other similar inequalities for R_,

F,, 3. and fwfs -+dtds. Now, if ¢, e U(y), then ¢, ¢ U, (¢) for
1 1
0<g <e 8o, if we take 0<e,<e—eg, then U, (¢,)CU,(y). Hence we

see that the axiom (C) is satisfied.
If ¢,(t)=+(t) in the sense of L*[0,1], then at least one of the
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following inequalities is satisfied;

S [ Ui 17— Rty 7} dids | =,

0

[ [ 1aei®) = ) ) deds |2,

1

S [ 1820 P 3u(®) ) dtds| 2,

0

S [ 18e0u0) =] Sud®) 7} dtds | 2.

1
(In this representation, double suffices = are taken by the same order.)
So, the axiom (D) is satisfied. Therefore L?[0, 1] is a Hausdorff space.

Further we can see in III that the topology of this space is
uniform [9]. Let L*[0,1] denote the closure of the space LZ[0,1]
by this topology.

Remark. We can also express this topology by the following
way.

Let’s decompose f, into four parts: f,=f3+—fR-+if3+—af3-.
(fR+, fR-, f3+, f3- are positive distributions.) We call {f,} converges
to VT®+ —yT®-4iJT3+—iJTS- in the new topology if and only if
lim (fF+)2=T%+, lim (f}-)*=T%-, im (f3+)*=T3+, and lim(f3-)*=T3-
n->00 n->co n-»oo n->00
in D’ topology.

3. Classification of the Cauchy sequences. The Cauchy sequences
{¢,} in L*[0,1] satisfy the following condition; for an arbitrary
>0, there exists a sufficiently large number N such that ¢,cU.(¢,)
for all m, n>N.

We classify these sequences by the following equivalence re-
lations =: the Cauchy sequence {¢,} is equivalent to {v-,} if and
only if there exists a sequence {e¢,} such that ¢,>0, lime,=0 and

Pm€ Ucn(‘["m’)’ ‘I"m’e Utn(¢m) fOI‘ m, m,>N' T
We denote this relation by {¢,}={y.}. If we define the equiva-

lent class of the Cauchy sequences by this topology, then we can
identify the set of these classes to the complete space L?[0,1].

Lemma 3. If ¢,eU.(¥), ¢,cU.(¥); then

( 1 ) %‘H"me U4€(2"Ib‘)’

( 2 ) O(SDnG Ulalz‘(a#’)r

(3) ap,+ Be,c U.(y) for a+p=1, 0<a<], 0B
Proof.

(1) | [ IR+ pule) = Ro(2) ) deds |

=| [ [ R0+ R 00 4 | R ) dtds |
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=| [T IR @1+ Rogn®) 42 [ Re0) | R )|
vl —4|§)i‘+«,b|2)dtds>
<| [ [ @IRgu® 1 +2 1 Roput) =4 | R ) deds |
0 0

< Ade.
We can prove similarly inequalities. So ¢,+¢,,€ U.(24).
2) | [ e an @ =Ry ap(t) F dtds| < a e
I
We can prove other inequalities also. So a@,€ U . :.(0).
(3) U f{|9%+(ason+ﬁsom)lz—|z}t«p(t) |2}dtds‘
0 0
<lal| [*[URgulr= 1R A7) deds |+
0 0
+B fxfs(l81+§Dml2—lﬂ%+~,b]2)dtds.+
0 0

t2las 1] [ [ (1ol Bepn =1 0,90) 1) deds|
<|ale+| ﬂ|22+§|a-,3|
'\f”f((lﬂw%l R, 0 [9)/2—| R (2) [7) dtds‘

<(lal*+|B*+2]a-B|)e=(a+ B)*e=e.
We can prove similarly other inequalities. Hence a¢,+ Sy, < U,(0)
for a+p8=1, 0=a=1, 0=<B=<1. From this lemma we conclude that
the space L?[0,1] is a convex topological space.

But it is not linear. Because, we can construct the following
example;

We can define Vo(3), using above remark. Now let ¥,={¢,,}
eL?[0,1], ¥,={¢,}eL*[0,1] be the sequences which satisfy the
following conditions ¥,=¥,=+v8(1/2), ¢;,>0, ¢,,>0 and Carrier
(¢1.)NCarrier (¢;,)=¢. Then {¢y,+ 0.} =+v25(1/2) %2/5(1/2).

4. Unified representation of state vectors. In order to construct
the linear topological space which represents the space of state
vectors, we select subclasses from the space LZ[0,1] as follows:

At the first step, from any equivalent class ({¢,}))eL?[0,1] we
select a particular sequence {¢}} as follows:

For ¥eL?[0,1], we define )=+ ie. T={y, .-}
For ¥veL*[0,1]—L?[0,1], we select {2} by the following way.
Let 4,,,, denote the following functions;
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4 { =Vpn@)  for xe[0,1]
™R =0 for x¢[0,1], where z,¢[0,1].
For v¥=yi(x,) (2,%0,1), we define {p2}={d, s}
For v=4o(x,) (2,=0,1), we define {pl}={V2 4,4}
For =e“Jo(x,) (2,%0,1), we define {p}={e"4,,,,}.
For =¢“J5(1) and ¢“y5(0), we define {pl}={e?’y 2 4, .}.
By these selections, from every equivalent class of L?[0,1],
we can select {¢%} because the following lemma holds.

Lemma 4. In L?[0,1], there is mo other element thanm the

countable linear combinations of the following elements;

(1) Ve L*[0,1]

(2) Vo,,(@) (0=<z=<1).

Proof. Using the above stated remark, we see that

if {(fF)?, ¢>=0 for all 0< pe(D), then {(T%, ¢>=0 for all 0<pec(D),
if {(f3)% ¢>=0 for all 0<pe(D), then (T*, 0> =0 for all 0<pe(D),
if (3% > =0 for all 0<pe(D), then (T3, ¢y =0 for all 0< pe(D),
if {(f3)% ¢>=0 for all 0< pe(D), then (T3, ) =0 for all 0< pe(D).

From these results T%:, T®- T3 T3 are positive measures.
Hence we can obtain the conclusion of this lemma [17.

In the 2nd step, we construct set of subclasses which satisfy the
uniformly equivalent condition and include the above selected parti-
cular sequence, where uniformly equivalence is defined as follows:

Definition. If there exists €,>0 such that lim e,=0 and |¢,—,|

700

<e, then we say that {¢,} is uniformly equivalent to {,}, and denote
it by {p.}={y.).

Using these notations, uniformly equivalent subclass is expressed
as follows:

[les]= {{eahs {oae((ol), fo=let)]
Lemma 5. If {¢,} and {4} are Cauchy sequence and if {¢,}={3,},

{2 {0}, then {o,+v.}={B,+¥.), {ap)={ad,), and {3}, (¥},
{eat+¥.), {ap.) are Cauchy sequences.

Let’s define the inner product ({,}, {¥.}>=1lim f Igonx]:n dt.
0

Lemma 6. If {¢,}={e,}, {Ya}={y}, then (8.}, {¥.}) ={eu), {¥a]).
Let’s define {[{¢,}1, [¥}1> by <{en}, {¥a}> where {¢)e}[{ea}], {¥h}e [{¥.}].
Let’s call the space L of uniformly equivalent classes which is con-
structed in the above 2nd step a space of generalized state vectors.

Now our state vector’s space L must satisfy the following Theorem;

Theorem. A space of generalized state vectors satisfy the condi-
tions (1) and (2).
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(1) im the space L, we can define an innerproduct,
(2) L is a complete linear topological space.
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