69. Projective Limits and Metric Spaces with u-Extension Properties

By Masahiko ATSUJI Senshu University, Tokyo (Comm. by K. KUNUGI, M.J.A., July 12, 1962)

A metric space is said to have a u-extension property if any uniformly continuous real map defined on any subspace can always be extended uniformly over the whole space. Corson and Isbell [6] proved the theorem that a metric space has a u-extension property if and only if its completion is a projective limit [5] of fine metric spaces. We know [1,3] some conditions characterizing a metric space with a u-extension property. Using the conditions and applying the idea of Flachsmeyer [7], we are, in this note, going to prove the same theorem with a somewhat simpler projective system.

We know (Theorem 2, [1]) that a metric complete space S has a u-extension property if and only if, for any natural number n, there is a compact subset K_n such that for any open set G containing K_n there is a natural number m satisfying $V_{1/m}^{\infty}(x) \subset V_{1/n}(x)$ for every point $x \notin G$, where $V_{1/n}$ is the entourage $\{(x, y); d(x, y) < 1/n\}$ of the uniform structure of the space and $V_{1/m}^{\infty}(x)$ is the set of all points which are joined with x by $V_{1/m}$ -chains.

 K_n in this statement is taken as the set of all points x satisfying $V_{1/n}^{\infty}(x) \oplus V_{1/n}(x)$ for any i [3]. For each $x \notin K_n$, we take the least natural number i(n, x) of numbers j with $V_{1/j}^{\infty}(x) \oplus V_{1/n}(x)$, and put

$$H_n(x) = V_{1/i(n,x)}^{\infty}(x).$$

(1) $H_m(y) \supset H_n(x)$ if and only if $H_m(y) \cap H_n(x) \neq \phi$ and $i(m, y) \leq i(n, x)$.

In fact, if $H_m(y) \supset H_n(x)$ and i(m, y) > i(n, x), then $H_n(x) \supset V_{1/i(n,x)}^{\infty}(y)$, and so $V_{1/i(n,x)}^{\infty}(y) = V_{1/i(m,y)}^{\infty}(y)$, which contradicts the definition of i(m, y).

Hence there is the greatest $H_n(y)$ containing $H_n(x)$ whose i(n, y) is the least of i(n, z) with $H_n(z) \supset H_n(x)$, such the $H_n(y)$ is denoted by $G_n(x)$.

(2) $G_n(x) \neq G_n(y)$ implies $G_n(x) \cap G_n(y) = \phi$.

We put

$$J_n = K_n - \bigcup_{x} G_n(x)$$

and have the equivalent relation R_n on S defined by the cover $\alpha_n = \{(p), G_n(x); p \in J_n, x \in S - K_n\},\$

where (p) is the singleton, namely, $xR_n y$ if no member of α_n includes

No. 7] Projective Limits and Metric Spaces with *u*-Extension Properties

only one of the points x and y [7].

(3) α_{2n} refines α_n .

In fact, if $x \in S - K_{2n}$, then $x \in S - K_n$. We assume $G_n(x) = H_n(x_1)$, $G_{2n}(x) = H_{2n}(x_2)$ and $i(n, x_1) > i(2n, x_2)$, then $H_n(x_1) \subset H_{2n}(x_2)$ and $d(x_2, x_1)$ < 1/2n. On the other hand, $H_n(x_1) \subset V_{1/i(2n, x_2)}^{\infty}(x_1) = V_{1/i(2n, x_2)}^{\infty}(x_2)$, so we have $V_{1/i(2n, x_2)}^{\infty}(x_1) \subset V_{1/n}(x_1)$, which contradicts the definition of $i(n, x_1)$. Hence we have $i(n, x_1) \le i(2n, x_2)$ and $G_n(x) \supset G_{2n}(x)$ by (1).

(4) $xR_{2n}y$ implies xR_ny . Therefore, we can now write $R_n \leq R_{2n}$ (cf. [7]).

We define the distance function $\delta(u, v)$ of the points u and vin the set S/R_n by $\delta(u, v) = d(u', v')$ which is the distance between the inverse images u' and v' in S of u and v by the canonical map φ_n on S to S/R_n .

(5) δ is compatible with the topology of the quotient space S/R_n .

In fact, let \mathcal{T} be the quotient topology and U an open neighborhood in \mathcal{T} of a point u of S/R_n , then $U' = \varphi_n^{-1}(U)$ is open in S. (i) When $u' \cap J_n = \phi, u' = \varphi_n^{-1}(u)$, then there is $x \in S - K_n$ such that $u' = G_n(x)$, and we have $V_{1/i(n,x)}(u') = u', V_{1/i(n,x)}(u) = (u)$. (ii) When $u' \cap J_n \neq \phi$, then $u' = x \in J_n$, and we have $V_{1/m}(x) \subset U'$ for some m, so $V_{1/m}(u) \subset U$ because $\varphi_n^{-1}(v) \cap U' \neq \phi, v \in S/R_n$, implies $\varphi_n^{-1}(v) \subset U'$. Conversely, since $\bigcup \{v'; \delta(u, v) < 1/m\}$ is open in S, $\{v; \delta(u, v) < 1/m\}$ is open in \mathcal{T} .

(6) $\{R_{2^n}; n=1, 2\cdots\}$ is fundamental [7], namely, all open sets in S which are saturated with respect to the relations build a basis of open sets in S, and no two different points in S are equivalent to each other with respect to all the relations.

In fact, let E be an open set in S including a point x, then we have $V_{1/n}(x) \subset E$ for some n. When $x \in J_{4n}$, then we have $E \supset \bigcup \{u'; u \in \alpha_{4n}, \delta(x, u) < 1/4n\}$. When $x \notin J_{4n}$, then $G_{4n}(x) \subset E$. Moreover, if d(x, y) > 1/n, then $x \overline{R}_{2n} y$ because dia $G_{2n}(z) < 1/n$ for any $z \in S$.

(7) Consequently, when we write $f_{n,2n}$ for the canonical map of S/R_{2n} to S/R_n , which maps an R_{2n} -class to the R_n -class containing the R_{2n} -class, then it is uniformly continuous and we have the projective system [5] $(S/R_{2^n}, f_{2^m,2^n}; m, n=1, 2, \cdots)$ of metric spaces and the projective limit $S^* = \lim_{\leftarrow} S/R_{2^n}$ which contains S as a dense subspace by identifying $x \in S$ with $(\varphi_{2^n}(x))$ (Satz 1, [7]).

(8) S/R_n is fine [6] for every n.

In fact, let us suppose that $\{u_1, u_2, \dots\}, u_i \in S/R_n$, does not have any accumulation point. We take a point $x_i \in u'_i = \varphi_n^{-1}(u_i)$ for every *i*, then $\{x_i\}$ does not have any accumulation point in *S*. Therefore, the number of u'_i meeting the compact K_n , say u'_1, \dots, u'_r , is finite, so $A = \bigcup_{i>r} u'_i$ is closed and disjoint from K_n . There is *k* such that $V_{i/k}^{\infty}(x)$ $\subset V_{1/n}(x)$ for all $x \in A$ (cf. Theorem 2 in [1] cited at the first part of this note), and so $V_{1/k}(G_n(x)) = G_n(x)$ for all $x \in A$, i.e. $V_{1/k}(u_i) = u_i, i > r$, and hence S/R_n is fine (Theorem 1, [4]).

(9) S is a uniform subspace of S^* .

In fact, let f_n be the canonical map of S^* to S/R_n , and put $g_n = f_n \times f_n$, then we have $g_{5m}^{-1}(\{(u, v); u, v \in S/R_{5m}, \delta(u, v) < 1/5m\}) \cap (S \times S)$ $\subset \{(x, y); x, y \in S, d(x, y) < 1/m\}$, and $\{(x, y); d(x, y) < 1/m\} \subset g_n^{-1}(\{(u, v); u, v \in S/R_n, \delta(u, v) < 1/m\}) \cap (S \times S)$ for any m and n.

Therefore, we have $S^*=S$ by the completeness of S, and, from Corollaries 1, 2 in [2] and Theorem 1.4 in [6], which is an immediate consequence from Theorem¹⁾ in [2], we have

Theorem (Corson and Isbell [6]). A metric space has a uextension property if and only if its completion is a projective limit of fine metric spaces.

Remark. The proof of Corollary 1 in [2] is not correct. Though we can readily prove it in the same direction, we shall here show a simple proof in another way.

Let $\{A_n\}$ be a U-discrete sequence of subsets, $\{a_n\}$ a sequence of natural numbers, and $V^2 \subset U$. There is a continuous real map f on S with the value a_n on A_n and 0 on $S \cup V(A_n)$. Since S is uc, f is uniformly continuous, so S has a u-extension property by the lemma and by the theorem stated before the corollary.

References

- M. Atsuji: Uniform extension of uniformly continuous functions, Proc. Japan Acad., 37, 10-13 (1961).
- [2] —: Uniform spaces with a u-extension property, Proc. Japan Acad., 37, 204-206 (1961).
- [3] —: Remarks on metric spaces with u-extension properties, Proc. Japan Acad., 37, 539-543 (1961).
- [4] —: Uniform continuity of continuous functions of metric spaces, Pacific J. Math., 8, 11-16 (1958).
- [5] N. Bourbaki: Topologie Générale, Chap. I-II, Paris (1960).
- [6] H. H. Corson and J. R. Isbell: Some properties of strong uniformities, Quart. J. Math., 11, 17-33 (1960).
- [7] J. Flachsmeyer: Zur Spektralentwicklung topologischer Räume, Math. Ann., 144, 253-274 (1961).

¹⁾ In the proof of the "if" part of the theorem in [2], f should read as nonnegative (we may assume it without loss of generality); the same is true for n.