426 [Vol. 38,

97. On a Product of Summability Methods

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by K. Kunugi, M.J.A., Oct. 12, 1962)

The present note is a continuation of a previous paper by the author $\lceil 3 \rceil$. O. Szász [13, 14] discussed the following problem concerning the product of two summability methods for sequences: If a sequence $\{s_n\}$ is summable by a regular T_1 method then is the T_2 transform of $\{s_n\}$, where T_2 is a regular sequence-to-sequence method, also summable by the T_1 method to the same sum as before? In what follows we denote $T_1 \cdot T_2$ as the iteration product of these two methods, that is the T_1 transform of the T_2 transform of He answered this problem in the affirmative in the several cases. He also gave an example of two regular methods, where T_1 does not imply $T_1 \cdot T_2$. Here we denote "method A implies method B", when any sequence summable A is summable B to the T. Pati [5], C. T. Rajagopal [7], M. R. Parameswaran same sum. [6], M. S. Ramanujan [11, 12], D. Borwein [1] and the author [3] also discussed this problem. M.S. Ramanujan [11] proved the following

Theorem 1. For a bounded sequence the Abel method A implies the $A \cdot (H^*, \psi)$ method. Here we denote by (H^*, ψ) the regular quasi-Hausdorff method. In the special case when the (H^*, ψ) method gives the circle method of summability (γ, r) , the Abel method implies the $A \cdot (\gamma, r)$ method irrespective of whether $\{s_n\}$ is bounded or not.

The latter part of this theorem was at first established by O. Szász [14]. See for the definition of the quasi-Hausdorff method of summability G. H. Hardy [2] and M. S. Ramanujan [8, 9, 10].

On the other hand M.S. Ramanujan [10] introduced a new method of summability (S^*, ψ) by a modification of the quasi-Hausdorff method. The (S^*, ψ) means of a sequence $\{s_n\}$ are defined by the transformation

(1)
$$s_n^* = \sum_{\nu=0}^{\infty} {n+\nu \choose \nu} s_{\nu} \int_0^1 (1-t)^{\nu} t^{n+1} d\psi(t) \quad (n=0,1,2,\cdots),$$

where $\psi(t)$ is a function of bounded variation in the closed interval [0,1]. This method is regular if, and only if,

$$\psi(1) = \psi(1-0)$$

and

(3)
$$\int_{+0}^{1}\!d\psi(t)\!=\!1. \quad \text{(See [10].)}$$

In the special case when, for a given α (0< α <1),

$$\psi(t)=0$$
 for $0 \le t < 1-\alpha$
=1 for $1-\alpha \le t \le 1$,

we have the S_{α} method of W. Meyer-König [4] and P. Vermes [15]. Concerning the (S^*, ψ) method M. S. Ramanujan [12] proved further the following

Theorem 2. If $\{s_n\}$ satisfies the following condition: For every t in 0 < t < 1, there exists a function F(x) finite for every x in 0 < x < 1 such that

$$\frac{t}{1-xt}\sum_{\nu=0}^{\infty}|s_{\nu}|\left(\frac{1-t}{1-xt}\right)^{\nu} \leq F(x), \ (0 < x < 1).$$

Then the Abel method implies the $A \cdot (S^*, \psi)$ method, where the (S^*, ψ) method is assumed to be regular.

D. Borwein [1] studied the logarithmic method L. When a sequence $\{s_n\}$ is given we define the L method as follows: If

$$\frac{-1}{\log(1-x)}\sum_{n=0}^{\infty}\frac{s_n}{n+1}x^{n+1}$$

tends to a finite limite s as $x\rightarrow 1$ in the open interval (0,1), we say that $\{s_n\}$ is L-summable to s. It is well known that the Abel method implies the L method. (See G. H. Hardy [2].) Concerning this method D. Borwein [1] proved the following

Theorem 3. If (H, ψ) is a regular Hausdorff method, then the L method implies the $L \cdot (H, \psi)$ method.

See for the definition of the Hausdorff method of summability G. H. Hardy [2]. The author [3] proved the following

Theorem 4. If (H^*, ψ) is a regular quasi-Hausdorff method which satisfies the condition

(4)
$$\int_{0}^{\sigma} \log t \, |\, d\psi(t)| \text{ is finite for a positive } \sigma,$$

then the L method implies the $L \cdot (H^*, \psi)$ method for a bounded sequence. In the special case when the (H^*, ψ) method gives the circle method, the L method implies the $L \cdot (\gamma, r)$ method irrespective of whether $\{s_n\}$ is bounded or not.

Here we prove the following

Theorem 5. If (S^*, ψ) is a regular method which satisfies the condition (4), then the L method implies the $L \cdot (S^*, \psi)$ method for a bounded sequence.

2. Proof. For the proof we use the method of M. S. Ramanujan [12]. Since the (S^*, ψ) transforms of $\{s_n\}$ are given by (1) we have

(5)
$$\sum_{n=0}^{\infty} \frac{s_n^*}{n+1} x^{n+1} = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \sum_{\nu=0}^{\infty} \int_{0}^{1} {n+\nu \choose \nu} (1-t)^{\nu} t^{n+1} s_{\nu} d\psi(t)$$

provided the right-hand member exists. To prove this existence we consider the right-hand member with s_{ν} replaced by $|s_{\nu}|$ and $\psi(t)$,

supposed to be monotonic increasing (as is permissible). The right-hand member with these changes, is

$$\begin{split} \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} & \sum_{\nu=0}^{\infty} \int_{0}^{1} \binom{n+\nu}{\nu} (1-t)^{\nu} t^{n+1} |s_{\nu}| \, d\psi(t) \\ &= \int_{0}^{1} \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty} \binom{n+\nu}{\nu} (1-t)^{\nu} t^{n+1} \frac{x^{n+1}}{n+1} |s_{\nu}| \, d\psi(t) \\ &= \int_{0}^{1} \sum_{\nu=0}^{\infty} (1-t)^{\nu} |s_{\nu}| \, t \sum_{n=0}^{\infty} \binom{n+\nu}{\nu} \frac{x^{n+1}t^{n}}{n+1} \, d\psi(t) \end{split}$$

every inversion of operations being justified by the fact that we have only positive integrands or terms. Since

$$\begin{split} \sum_{n=0}^{\infty} \binom{n+\nu}{\nu} \frac{x^{n+1}t^n}{n+1} &= \int_0^x \frac{du}{(1-ut)^{\nu+1}} \\ &= \begin{cases} \frac{1}{t} \log \frac{1}{1-xt} & \text{for } \nu = 0\\ \frac{1}{t\nu} \left\{ \frac{1}{(1-xt)^{\nu}} - 1 \right\} & \text{for } \nu \ge 1, \end{cases} \end{split}$$

the last integral is

$$\int_{0}^{1} \left[|s_{0}| \log \frac{1}{1-xt} + \sum_{\nu=1}^{\infty} (1-t)^{\nu} |s_{\nu}| \frac{1}{\nu} \left\{ \frac{1}{(1-xt)^{\nu}} - 1 \right\} \right] d\psi(t).$$

Here we see easily

$$\log \frac{1}{1-xt} \le \log \frac{1}{1-x},$$

and further from $|s_{\nu}| \leq M$ we see

$$\sum_{\nu=1}^{\infty} (1-t)^{\nu} |s_{\nu}| \frac{1}{\nu} \left\{ \frac{1}{(1-xt)^{\nu}} - 1 \right\} \leq M \log \frac{1}{1-x},$$

for $0 \le t \le 1$ and 0 < x < 1. Hence the last integral is finite for 0 < x < 1 from (3). Therefore we get, from (5),

$$(6) \qquad \sum_{n=0}^{\infty} \frac{s_{n}^{*}}{n+1} x^{n+1}$$

$$= \int_{0}^{1} \left[s_{0} \log \frac{1}{1-xt} + \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} (1-t)^{\nu} \left\{ \frac{1}{(1-xt)^{\nu}} - 1 \right\} \right] d\psi(t)$$

$$= \int_{0}^{1} s_{0} \log \frac{1}{1-xt} d\psi(t) + \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(\frac{1-t}{1-xt} \right)^{\nu} d\psi(t) - \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} (1-t)^{\nu} d\psi(t).$$

Substituting $x=1-\frac{1}{u}$, we have

$$\frac{-1}{\log(1-x)} \int_0^1 s_0 \log \frac{1}{1-xt} d\psi(t)$$

$$= s_0 \int_0^1 \frac{\log y - \log(y - yt + t)}{\log y} d\psi(t)$$

$$=s_0 J$$
, say.

Since

$$\overline{\lim}_{y\to\infty} |J| \leq \overline{\lim}_{y\to\infty} \left\{ 1 - \frac{\log(y - y\sigma + \sigma)}{\log y} \right\} \int_{0}^{\sigma} |d\psi(t)| + \int_{0}^{1} |d\psi(t)|,$$

we have

$$\overline{\lim}_{y o\infty}|J|\!\leq\!\int^1\!\!|\,d\psi(t)|$$

for $0 < \sigma < 1$. Since, by (2),

$$\int_{a}^{1} |d\psi(t)| \rightarrow 0 \quad \text{as} \quad \sigma \rightarrow 1$$

in the open interval (0,1), we have $\overline{\lim}_{y\to\infty} |J|=0$. Next we put

$$f(x) = \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} x^{\nu} = \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(1 - \frac{1}{y}\right)^{\nu} = g(y).$$

If $\{s_n\}$ is L-summable to s, then

$$\lim_{y\to\infty}\frac{g(y)}{\log y}=s$$

from the translativity of the L method. (See $\lceil 1 \rceil$.) Since

$$\begin{split} &\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(\frac{1-t}{1-xt}\right)^{\nu} = \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(1 - \frac{t}{y-yt+t}\right)^{\nu} \\ &= g \left(\frac{y-yt+t}{t}\right) = g \left(1 + \frac{y(1-t)}{t}\right) \\ &= s \log \left(1 + \frac{y(1-t)}{t}\right) + o\left(\log \left(1 + \frac{y(1-t)}{t}\right)\right), \text{ as } y \to \infty, \end{split}$$

we have

$$(7) \qquad \frac{-1}{\log(1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(\frac{1-t}{1-xt}\right)^{\nu} d\psi(t)$$

$$= s \int_{0}^{1} \frac{\log\left(1+\frac{y(1-t)}{t}\right)}{\log y} d\psi(t) + \left(\int_{0}^{1} \frac{\log\left(1+\frac{y(1-y)}{t}\right)}{\log y} d\psi(t)\right).$$

On the other hand from (3) and (4) we have

$$\int_{0}^{1} \frac{\log\left(1 + \frac{y(1-t)}{t}\right)}{\log y} d\psi(t)$$

$$= \int_{0}^{1} \frac{\log(t + y(1-t))}{\log y} d\psi(t) - \int_{0}^{1} \frac{\log t}{\log y} d\psi(t)$$

$$= 1 + o(1), \text{ as } y \to \infty,$$

similarly as the estimation of J. Hence from (7)

$$\frac{-1}{\log(1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(\frac{1-t}{1-xt}\right)^{\nu} d\psi(t) \rightarrow s$$

as $x\rightarrow 1$ in the open interval (0,1).

Finally we have

$$\begin{split} \frac{-1}{\log(1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} (1-t)^{\nu} d\psi(t) \\ = \frac{1}{\log y} \int_{0}^{1} f(1-t) d\psi(t) = K, \text{ say.} \end{split}$$

Since $|s_n| \leq M$ or

$$|f(1-t)| \le M \sum_{\nu=1}^{\infty} \frac{(1-t)^{\nu}}{\nu} = -M \log t$$

for $0 < t \le 1$, we have

$$|K| \le \frac{-M}{\log y} \int_0^1 \log t |d\psi(t)| = o(1)$$
 as $y \to \infty$

from the condition (4).

Collecting above estimations

$$\frac{-1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{s_n^*}{n+1} x^{n+1}$$

tends to s as $x\rightarrow 1$ in the open interval (0,1), whence the proof is complete.

3. Remark. In the special case when, for a given α (0< α <1),

$$\psi(t)=0$$
 for $0 \le t < 1-\alpha$
=1 for $1-\alpha \le t \le 1$

which satisfies all the conditions of our theorem, (5) and (6) become respectively

(5')
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \sum_{\nu=0}^{\infty} {n+\nu \choose \nu} \alpha^{\nu} (1-\alpha)^{n+1} s_{\nu}$$

and

(6')
$$s_0 \log \frac{1}{1-x(1-\alpha)} + \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \alpha^{\nu} \left\{ \frac{1}{(1-x(1-\alpha))^{\nu}} - 1 \right\}.$$

Then we get the equality (5')=(6') irrespective of whether $\{s_n\}$ is bounded or not, since (6') converges absolutely in $0 \le x < 1$. Therefore we have the following

Corollary. The L method implies the $L \cdot S_{\alpha}$ method for $0 < \alpha < 1$.

References

- [1] D. Browein: A logarithmic method of summability, Jour. London Math. Soc., 33, 212-220 (1958).
- [2] G. H. Hardy: Divergent Series, Oxford (1949).
- [3] K. Ishiguro: On the product of some quasi-Hausdorff and logarithmic methods of summability, Proc. Japan Acad., 38, 318-322 (1962).
- [4] Meyer-König: Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z., **52**, 257-304 (1949).
- [5] T. Pati: Products of summability methods, Proc. Nat. Inst. Sci. India, 20, 348–351 (1954).

- [6] M. R. Parameswaran: Some product theorems in summability, Math. Z., 68, 19-26 (1957).
- [7] C. T. Rajagopal: Theorems on the product of two summability methods with applications, Jour. Ind. Math. Soc. (New Ser.), 18, 89-105 (1954).
- [8] M. S. Ramanujan: Series-to-series quasi-Hausdorff transformations, Jour. Ind. Math. Soc., (New Ser.), 17, 47-53 (1953).
- [9] —: A note on the quasi-Hausdorff series-to-series transformations, Jour. London Math., Soc., 32, 27-32 (1957).
- [10] —: On Hausdorff and quasi-Hausdorff methods of summability, Quart. Jour. Math., 8, 197-213 (1957).
- [11] —: Theorems on the product of quasi-Hausdorff and Abel transforms, Math. Z., 64, 442-447 (1956).
- [12] —: On products of summability methods, Math. Z., 69, 423-428 (1958).
- [13] O. Szász: On products of summability methods, Proc. Amer. Math. Soc., 3, 257-263 (1952).
- [14] —: On the product of two summability methods, Ann. Soc. Polon. Math., 25, 75-84 (1952).
- [15] P. Vermes: Series to series transformations and analytic continuation by matrix methods, Amer Jour. Math., 71, 541-562 (1949).