426 [Vol. 38,

97. On a Product of Summability Methods

By Kazuo ISHIGURO
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by K. KuNucGl, M.J.A., Oct. 12, 1962)

1. The present note is a continuation of a previous paper by
the author [3]. O. Szasz [13, 14] discussed the following problem
concerning the product of two summability methods for sequences:
If a sequence {s,} is summable by a regular T, method then is the
T, transform of {s,}, where T, is a regular sequence-to-sequence
method, also summable by the T, method to the same sum as be-
fore? In what follows we denote 7,-T, as the iteration product of
these two methods, that is the T, transform of the T, transform of
a sequence. He answered this problem in the affirmative in the
several cases. He also gave an example of two regular methods,
where T, does not imply T,-T,. Here we denote “method A implies
method B”’, when any sequence summable A is summable B to the
same sum. T. Pati [5], C.T. Rajagopal [7], M.R. Parameswaran
[6], M.S. Ramanujan [11, 12], D. Borwein [1] and the author [3] also
discussed this problem. M.S. Ramanujan [11] proved the following

Theorem 1. For a bounded sequence the Abel method A implies
the A-(H*, ) method. Here we denote by (H*, ) the regular quasi-
Hausdorff method. In the special case when the (H*, «r) method gives
the circle method of summability (y, r), the Abel method implies the
A-(r, r) method irrespective of whether {s,} is bounded or mot.

The latter part of this theorem was at first established by O.
Szasz [147]. See for the definition of the quasi-Hausdorff method of
summability G. H. Hardy [2] and M.S. Ramanujan [8,9, 10].

On the other hand M. S. Ramanujan [10] introduced a new me-
thod of summability (S*, ) by a modification of the quasi-Hausdorff
method. The (S* ) means of a sequence {s,} are defined by the
transformation

(1) s=Fems [a-pean 0=012),

where (t) is a function of bounded variation in the closed interval
[0,1]. This method is regular if, and only if,

(2) Y¥(1)=4(1-0)
and )
(3) f dy(t)=1. (See [10].)

In the special case when, for a given a (0<a<1),
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P(t)=0 for 0<i<l—a
=1 for 1—a<t<1,
we have the S, method of W. Meyer-Konig [4] and P. Vermes [15].
Concerning the (S*, ) method M.S. Ramanujan [12] proved further
the following
Theorem 2. If {s,} satisfies the following condition: For every
t im 0<t<l, there exists a function F(x) finite for every x in
0<x<1 such that

xth' '< ><F(x), 0<z<1).

Then the Abel method implies the A-(S*, ) method, where the (S*, )
method is assumed to be regular.

D. Borwein [1] studied the logarithmic method L. When a
sequence {s,} is given we define the L method as follows: If

_1 = S n+1
log(1—x) »=on+1

tends to a finite limite s as #—1 in the open interval (0, 1), we say
that {s,} is L-summable to s. It is well known that the Abel method
implies the L method. (See G.H. Hardy [2].) Concerning this me-
thod D. Borwein [1] proved the following

Theorem 3. If (H, ) is a regular Hausdorff method, then the
L method implies the L-(H,) method.

See for the definition of the Hausdorff method of summability
G.H. Hardy [2]. The author [8] proved the following

Theorem 4. If (H* ) is a regular quasi-Hausdorff method
which satisfies the condition

(4) f vlog’tld«#(t)l is finite for a positive o,
0

then the L method implies the L-(H*, ) method for a bounded
sequence. In the special case when the (H*,+) method gives the
circle method, the L method implies the L-(y,r) method irrespective
of whether {s,} is bounded or not.

Here we prove the following

Theorem 5. If (S*, ) is a regular method which satisfies the
condition (4), then the L method implies the L-(S*, ) method for
a bounded sequence.

2. Proof. For the proof we use the method of M. S. Ramanujan
[12]. Since the (S*, ) transforms of {s.} are given by (1) we have

e s n+1

(5)  Stoar=3i TS [ era—teedu)

provided the rlght-hand member ex1sts. To prove this existence we
consider the right-hand member with s, replaced by [s,| and (t),
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supposed to be monotonic increasing (as is permissible). The right-

hand member With these changes, is

ST j A=t 5, dye(2)

= [Sema- t)t"”“ Isld«!r(t)

n=0v=0

-fza —tr |1t 5305 2yt

every inversion of operatlons being justified by the fact that we have
only positive integrands or terms. Since

oo - xn+1tn— Zz du
,;,( ) n+1 (1 —wut)**
1 lgl—_l_— for v=0
-1—-{———-1—.—-1} for v>1,
1—at)”

the last integral is

f[lsoilog

0
Here we see easily

Sty S {1 o,

1 1
<lo ,
1—uat g 1—x

and further from |s,|<M We see

E(l t)' s, | — {(—1'}"')— 1} _<_M10g1}_

for 0<¢<1 and 0<z<1. Hence the last integral is finite for 0 <ax <1
from (8). Therefore we get, from (5),

(6) iiwnwl
a=0 N1

- Toe

= f solog d«p(t)—l— 12} sp" ( )d«P(t)—

log

3 {21 v

- gl—v”-(l—t)”dalr(t).

Substituting w:l——L, we have
y

log(l a;)f 0 og dw(t)

f‘logy log(y =Vt g
4 logy




No. 8] On a Product of Summability Methods 429

=s,J, say.
Since
lim | 7| <Tim {18 U=V} [y e)+ [aye)),
Yoo oo log ¥ ? /
we have

— 1
m | J) <
EEVALYC]
for 0<o<1. Since, by (2),
f dp(t) -0 as o1

in the open interval (0,1), we have lim |J|=0. Next we put
Y—o0
fo=3-2rw= 515 (1- 1) =g(),
v=1 ) v=1 y y

If {s,} is L-summable to s, then

lim I —g
v—e log ¥y
from the translativity of the L method. (See [1].) Since

o __s_v-_ l_t >u= o _S_,,<1__ t >v
'§ y <1—xt Zl: y y—yt+t

Aol 2020)

=slog <1+————y(1;t)>+0<log<1+—y(1t_t)>>, as y—>oo,

we have
—1 &y s, [ 1—t\
(7 log(l—x)[vg v <1——xt> ()
" ]og 1+yg.:t_)>
— t
=s f gy O+
110g<1 n y(lg—y)>
+o ) gy dy(t) | -
On the other hand from (3) and (4) we have
.log 1+—y(1—t)—
. ogy
:fl log (t+y(1—1)) A (t) — flloﬁ"dq,(t)
/ log ¥ ) logy

=14o0(1), as y—>oo,
similarly as the estimation of J. Hence from (7)

-1 teyvs, (1=t
—_— = (=) dar(t
log (1—2)/ Z} v <1—xt> V(D)
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as #—>1 in the open interval (0, 1).
Finally we have

—1 1SV 8y 1 gy
log(l—w)[§7(1 ()

1
log y

1
[ Fa—tdp)=K, say.
0
Since |s,|<M or
A=) <M A= — _ pfi0g ¢
v=1 Y
for 0<£<1, we have
1K< =2 [og ¢ jaw(t)|=o(1) as y>oo
logy
from the condition (4).
Collecting above estimations
-1 < S;r n+1
log (1 —%)s=0 n+1
tends to s as #—1 in the open interval (0,1), whence the proof is
complete.
3. Remark. In the special case when, for a given a (0<a<1),
Y(t)=0 for 0<t<l—a
=1 for 1—a<t<l1

which satisfies all the conditions of our theorem, (5) and (6) become
respectively

, 3 wn+l L by v . n+1
and
4 1 S 8 1
) og 1 4 &sof 1)
(6) %o l0g 1—2(1—a) +§ y {(1—95(1“‘“))” }

Then we get the equality (5')=(6") irrespective of whether {s,} is
bounded or not, since (6’) converges absolutely in 0 <x<1. Therefore
we have the following

Corollary. The L method implies the L-S, method for 0<<a<1.
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