137. A Criterion for Divisors on Algebraic Varieties to be Torsion Divisors

By Satoshi Arima
Department of Mathematics, Musashi Institute of Technology, Tokyo
(Comm. by Z. Suetuna, m.J.A., Nov. 12, 1962)

The purpose of the present note is to prove the following
THEOREM. Let $V=V_{r}$ be a non-singular algebraic variety of dimension $r \geqq 2$ in the N-dimensional projective space \boldsymbol{P}_{N}, and X and Y be divisors on V_{r}. If $\operatorname{deg} X=\operatorname{deg} Y$ and $\operatorname{deg}(X \cdot X)=\operatorname{deg}(X \cdot Y)$ $=\operatorname{deg}(Y \cdot Y)$, then $X-Y$ is a torsion divisor.

In the case where $r=2$, this was proved by Severi (cf. Zariski [5, p. 90]). (Severi [3] generalized this result in the following form for the case of arbitrary r, from which however our theorem for $r>2$ does not follow: $X-Y$ is a torsion divisor if $\operatorname{deg} X=\operatorname{deg} Y$ and $\operatorname{deg}\left(X^{r}\right)=\operatorname{deg}\left(X^{r-1} \cdot Y\right)=\operatorname{deg}\left(X^{r-2} \cdot Y^{2}\right)=\cdots=\operatorname{deg}\left(Y^{r}\right)$.)

We begin by the following lemma which is well-known (cf. [4, p. 214, Cor. to Th. 18]).

Lemma 1. Let k be a field of definition of V_{r} over which X and Y are rational; let H_{m} be a generic hypersurface over k of degree m in \boldsymbol{P}_{N}. Then the intersection product $C_{m}=\left(V \cdot H_{m}\right)_{\boldsymbol{P}_{N}}{ }^{1)}$ is defined and becomes a variety which is also non-singular, $\left(X \cdot C_{m}\right)_{V}$ is defined, and we have $\left(X \cdot C_{m}\right)_{V}=\left(X \cdot H_{m}\right)_{\mathbf{P}_{N}}$ and $\operatorname{deg}\left(X \cdot C_{m}\right)_{V}=m \operatorname{deg} X$.

Lemma 2. k being as in Lemma 1, let H be a generic hyperplane over k in \boldsymbol{P}_{N}, and let $C=(V \cdot H)_{\boldsymbol{P}_{N}}$. Assume that the intersection product $(X \cdot Y)_{V}$ is defined. Then $\left[(X \cdot C)_{V} \cdot(Y \cdot C)_{V}\right]_{C}$ is defined, and we have $\left[(X \cdot C)_{V} \cdot(Y \cdot C)_{V}\right]_{C}=\left[(X \cdot Y)_{V} \cdot H\right]_{P_{N}}$, and especially we have $\operatorname{deg}\left[(X \cdot C)_{V} \cdot(Y \cdot C)_{V}\right]_{C}=\operatorname{deg}(X \cdot Y)_{V}$.

Proof. Let $Y=Y_{1}-Y_{2}, Y_{i} \geqq 0$ be the reduced expression of Y. Note that $\left(X \cdot Y_{i}\right)_{V},(X \cdot C)_{V},(Y \cdot C)_{V}$ and $\left[\left(X \cdot Y_{i}\right)_{V} \cdot C\right]_{V}=\left[\left(X \cdot Y_{i}\right)_{V} \cdot H\right]_{\boldsymbol{P}_{N}}$ are defined. We now show that $\left[X \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{V}$ is defined. In fact, to see this we may assume that X and Y_{i} are varieties defined over k. If $\left[X \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{V}$ were not defined, then some component Z of $\left(Y_{i} \cdot C\right)_{V}$ would be contained in X, since X is a divisor. Let H be defined by the equation $u_{0} X_{0}+u_{1} X_{1}+\cdots+u_{N} X_{N}=0$, then Z is defined over the algebraic closure $\overline{k(u)}$ of $k(u)$. Take a generic point P of Z over $\overline{k(u)}$, then P would be a generic point of Y_{i} over k. From this and $P \in Z \subseteq X$, would follow $Y_{i} \subseteq X$. This contradicts the assump-

[^0]tion that $\left(X \cdot Y_{i}\right)_{V}$ is defined, and proves our assertion. Since V and C are non-singular, and since $\left[\left(X \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{V}\right.$ and $(X \cdot C)_{V}$ are defined, $\left[(X \cdot C)_{V} \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{C}$ is defined and we have $\left[(X \cdot C)_{V} \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{C}$ $=\left[X \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{V}$ (cf. Weil [4, p. 214, Cor. to Th. 18]). Since $C>0$, $Y_{i} \geqq 0$, and since $\left(C \cdot Y_{i}\right)_{V},\left[\left(C \cdot Y_{i}\right)_{V} \cdot X\right]_{V}$ and $\left(Y_{i} \cdot X\right)_{V}$ are defined, it follows, from Weil [4, p. 203, Cor. to Th. 10], that $\left[C \cdot\left(Y_{i} \cdot X\right)_{V}\right]_{V}$ is defined and $\left[C \cdot\left(Y_{i} \cdot X\right)_{V}\right]_{V}=\left[\left(C \cdot Y_{i}\right)_{V} \cdot X\right]_{V}$. From this and what we have proved above, follows $\left[C \cdot\left(Y_{i} \cdot X\right)_{V}\right]_{V}=\left[(X \cdot C)_{V} \cdot\left(Y_{i} \cdot C\right)_{V}\right]_{V}$, which proves $\left[C \cdot(Y \cdot X)_{V}\right]_{V}=\left[(X \cdot C)_{V} \cdot(Y \cdot C)_{V}\right]_{V}$.

We shall use the following properties of the virtual arithmetic genus $p_{a}(D)$ of a divisor D on an algebraic surface, which will follow from the properties of the characteristic linear systems:

$$
\begin{equation*}
p_{a}(D+E)=p_{a}(D)+p_{a}(E)+\operatorname{deg}(D \cdot E)_{V}-1 \tag{1}
\end{equation*}
$$

where D and E are arbitrary divisors on the surface and n is an arbitrary integer $\geqq 2$ (cf. [6]).

We denote by $v(D)$ the virtual dimension of a divisor D on $V_{r}: v(D)=(-1)^{r}\left[p_{a}(V)+p_{a}(-D)\right]-1$.

Lemma 3. Let k and C_{m} be as in Lemma 1. Assume that $r=\operatorname{dim} V=2$. If $\operatorname{deg} X=\operatorname{deg} Y$ and $\operatorname{deg}(X \cdot X)_{V}=\operatorname{deg}(X \cdot Y)_{V}=\operatorname{deg}$ $(Y \cdot Y)_{V}$, then we have

$$
\begin{equation*}
p_{a}\left(-C_{m}-n X+n Y\right)=p_{a}\left(-C_{m}\right)-n p_{a}(X)+n p_{a}(Y), \tag{4}
\end{equation*}
$$

(5) $\quad v\left(C_{m}+n X-n Y\right)=v\left(C_{m}\right)+n p_{a}(Y)-n p_{a}(X)$
for all integer $n \geqq 1$.
Proof. We have $\operatorname{deg}\left(X \cdot C_{m}\right)_{V}=m \operatorname{deg} X=\operatorname{deg}\left(Y \cdot C_{m}\right)_{V}$ by the assumption and Lemma 1.

Case $n=1$: Making use of (1), (3) and the assumptions $\operatorname{deg} X$ $=\operatorname{deg} Y, \operatorname{deg}(X \cdot X)=\operatorname{deg}(X \cdot Y)$, we can easily see $p_{a}\left(-C_{m}-X+Y\right)$ $=p_{a}\left(-C_{m}\right)-p_{a}(X)+p_{a}(Y)$. Case of arbitrary n : Putting $A=n X$ and $B=n Y$, we have $\operatorname{deg} A=\operatorname{deg} B$ and $\operatorname{deg}(A \cdot A)=\operatorname{deg}(A \cdot B)=\operatorname{deg}(B \cdot B)$, and so $p_{a}\left(-C_{m}-n X+n Y\right)=p_{a}\left(-C_{m}\right)-p_{a}(n X)+p_{a}(n Y)$. In view of (2), we have therefore

$$
\begin{aligned}
p_{a}\left(-C_{m}-n X+n Y\right)= & p_{a}\left(-C_{m}\right)-\left[n p_{a}(X)+\binom{n}{2} \operatorname{deg}(X \cdot X)-n+1\right] \\
& +\left[n p_{a}(Y)+\binom{n}{2} \operatorname{deg}(Y \cdot Y)-n+1\right] \\
= & p_{a}\left(-C_{m}\right)-n p_{a}(X)+n p_{a}(Y) .
\end{aligned}
$$

This proves Lemma 3.
Proof of Theorem. Assume that $\operatorname{deg} X=\operatorname{deg} Y$ and $\operatorname{deg}(X \cdot X)$ $=\operatorname{deg}(X \cdot Y)=\operatorname{deg}(Y \cdot Y) . \quad$ In the case where V is of dimension 2, Severi's proof is as follows (cf. Zariski [5, p.90]). We can assume that $p_{a}(Y) \geqq p_{a}(X)$, without loss of generality. Fix a sufficiently
large integer m which is such that $v\left(C_{m}\right)>0$ and $\operatorname{dim}\left|C_{m}+n X-n Y\right|$ $\geqq v\left(C_{m}+n X-n Y\right)$ for all $n \geqq 0$. Then each linear system $\mid C_{m}+n X$ $-n Y \mid$ contains a positive divisor Z_{n}, since $\operatorname{dim}\left|C_{m}+n X-n Y\right|$ $\geqq v\left(C_{m}+n X-n Y\right)=v\left(C_{m}\right)+n p_{a}(Y)-n p_{a}(X)>0$ by Lemma 3. The set of the Chow points $c(Z)$ of the positive divisors Z of the given degree $\operatorname{deg} C_{m}$ on V form an algebraic set W in some projective space. Since $\operatorname{deg} Z_{n}=\operatorname{deg}\left(C_{m}+n X-n Y\right)=\operatorname{deg} C_{m}$, we have $c\left(Z_{n}\right) \in W(n=0,1$, $2, \cdots)$. Therefore some component W_{1} of W contains at least two points, say, $c\left(Z_{n}\right), c\left(Z_{n_{j}}\right)\left(n_{i}<n_{j}\right)$. (It may happen that $c\left(Z_{n_{i}}\right)=c\left(Z_{n_{j}}\right)$.) Thus $Z_{n_{j}}-Z_{n_{i}}$ is algebraically equivalent to zero; so that $C_{m}+n_{j} X$ $-n_{j} Y-\left(C_{m}+n_{i} X-n_{i} Y\right)=\left(n_{j}-n_{i}\right)(X-Y)$ is algebraically equivalent to zero; this completes the proof of Theorem in case $r=2$.

Now assume that $r \geqq 3$ and that Theorem is proved for varieties of dimension $r-1$. Let k be an algebraically closed field of definition of V over which X and Y are rational. Let H be a generic hyperplane over k in \boldsymbol{P}_{N}, and $C=(V \cdot H)_{\boldsymbol{P}_{N}} ; C$ is a non-singular variety of dimension $r-1$. We have $\operatorname{deg}(X \cdot C)_{V}=\operatorname{deg}(Y \cdot C)_{V}$ by Lemma 1. We may assume that $(X \cdot Y)_{V}$ is defined, since the assumptions and the conclusion of Theorem are invariant against the linear equivalence. In view of Lemma 2, we have also deg $\left[(X \cdot C)_{V} \cdot(Y \cdot C)_{V}\right]_{C}=\operatorname{deg}(X \cdot Y)_{V}$. Similarly we have $\operatorname{deg}\left[(X \cdot C)_{V} \cdot(X \cdot C)_{V}\right]_{C}=\operatorname{deg}(X \cdot X)_{V}$ and $\operatorname{deg}\left[(Y \cdot C)_{V}\right.$ $\left.\cdot(Y \cdot C)_{V}\right]_{C}=\operatorname{deg}(Y \cdot Y)_{V}$. It follows that for the divisors $X_{1}=(X \cdot C)_{V}$ and $Y_{1}=(Y \cdot C)_{V}$ on C of dimension $r-1$, we have $\operatorname{deg}\left(X_{1} \cdot X_{1}\right)_{C}$ $=\operatorname{deg}\left(X_{1} \cdot Y_{1}\right)_{C}=\operatorname{deg}\left(Y_{1} \cdot Y_{1}\right)_{c}$. It follows therefore, by the induction hypothesis, that there exists an integer $n \neq 0$ such that $n X_{1}-n Y_{1}$ $=[(n X-n Y) \cdot C]_{V}$ is algebraically equivalent to zero on C. Since $\operatorname{dim} C=r-1 \geqq 2$, we can conclude that $n X-n Y$ is algebraically equivalent to zero on V by Matsusaka [1, p. 63, Theorem 3] and Severi [2, p. 294]; this completes our proof.

References

[1] T. Matsusaka: The criteria for algebraic equivalence and the torsion group, Amer. Journ. Math., 79, 53-66 (1957).
[2] F. Severi: Geometria dei Sistemi Algebrici sopra una Superficie e sopra una Varietà Algebrica, Roma (1958).
[3] F. Severi: Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche, Atti del R. Istituto Veneto di Scienze, Lettere ed Arti, 75, 11211162 (1916).
[4] A. Weil: Foundations of Algebraic Geometry, New York (1946).
[5] O. Zariski: Algebraic Surfaces, Ergeb. d. Math., Berlin (1935).
[6] 0. Zariski: Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi, Ann. Math., 55, 552-592 (1952).

[^0]: 1) ($)_{V}$ and ()$_{\boldsymbol{P}_{N}}$ denote the intersection porducts of cycles on V and on \boldsymbol{P}_{N} respectively.
