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(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1962)

If a simple ring R is Galois and finite over a simple subring S
then R=S[u,v] with some conjugate u, v [6, Theorem 1]. In case
R is a division ring we have seen that R=S[»] with some r if and
only if R is commutative or S is not contained in the center C of
R [2, Theorem 8]. The purpose of this paper is to prove that this
fact is still valid for simple rings.

Throughout the present paper, R be always a simple ring (with
minimum condition), and S a simple subring of R containing the
identity element of R. And we shall use the following conventions:
R=37De,,;, where e¢,;’s are matrix units and D=V({e;’s}) a division
ring. And, C, Z and V are the center of R, the center of S and
the centralizer V;(S) of S in R respectively. When R is Galois
over S, we denote by & the Galois group of R/S. Finally, as to
notations and terminologies used in this paper, we follow [4].

In what follows, we shall prove several preliminary lemmas,
which will be needed exclusively for the proof of our principal result.

Lemma 1. Let R be Galots and finite over S. If R’ is an inter-
mediate ring of R[S such that R is R’-R-irreducible then R’ is a
simple ring.

Proof. By [3, Lemma 2], (¢|R')R, is R!-R,-irreducible and ca-
nonically R,-isomorphic to R, for each se@®. Next, let (z|R)R, be
R/-R -isomorphic to (¢|R")R, (6,7€8). If ¢|R' <—v,|R under the
isomorphism, then one will easily see that veV. Moreove, (zv,|R')R,
=(¢|R')R, yields at once vR=R. Hence, v is a regular element of
R. Now, it will be easy to see that z|R'=¢?|R’. And, the con-
verse is true as well. Finally, one may remark that Vi(R') is a
division ring. By the light of these facts, patterning after the proof
of [4, Lemma 1.47], we can prove that R’ is a simple ring. The
details may be left to readers.

Lemma 2. If ¢,RNS=x0 (i=1,---,n) then S2{ey, -+, €}

Proof. Each t,=e¢,, RS is a non-zero right-ideal of S, and r,
+.oitr,=1,D.--Dr,. As the capacity of S never exceeds that of
R, we obtain r,+:-- +1,=8S. Hence, ¢;+ -+ +¢,,=1=a,+ --- +a,
for some a,cr;. Recalling here that v,&e, R, it follows that e;=a;
€S (1=1,---, n).
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Lemma 3. Let =>7e,c;, be an element of R with c,,>0.

(i) Let n>2. If heD kx0eD are given, then there exists a
regular element reR such that rbr-'=>\re,d,, di,.,=h, di,=k and
d,,=0 (1=2,- .-, n).

(i) If n=2 and b is a regular element, then there exists a
regular element reR such that rbr*=3ie,d,, d,,x0, dy=1 and
dy=0.

Proof. (i) Set h'=cpi(h—ecy,-y), k' =citk. And consider the fol-
lowing product » of elementary matrices:

r=(07"eu+ ek )L —e,,_ k)

(1= €41C0nCin )L — €4 110 1aCin) * + * (1 —€212,C5) -
Then, we see that
7 =1+ €5102,65n) * * (L4 €4_ 110 - 1aCim J(L + €41CpnCin) -
(I+€,- 1P ) T e+ €0 K).

(i) 0* = (1 —eyC00")b(1— €5:1€52612") " = (1 — €21Ca0013") B(1 +-€21Co0053") =
e,,c¥ +e, 05 +e50,, (cF,c¥eD). Here, b* being a regular element, ¢y
can not be zero. And 50, (€,,65 + €5,)b*(€1,65 + €55) "1 =(e,,65 + €5)b* (1,65 1
+ey)=e,,d* +ec5ci €, (d*eD). Hence, it will be clear that r
= (1,65 +e90)(1—ey,055¢15") is our desired one.

In the rest of our preliminaries, we shall assume that R is Galois
and finite over S and [S:Z]< . Then, to be easily seen, R is Galois
and finite over C'=CN S (cf. [5, Lemma]). And so, R is Galois and
finite over > 7e,,C’; this means that V,(3)7e,,C')=D is Galois and
finite over C’. Hence, by [1, Theorem 4] or [6, Theorem 1], D=C"[x,
y] for some non-zero elements x, yeD.?

Lemma 4. Let R be Galois and finite over S, [S:Z]<x, V a
division ring, and n=2. If S contains an element a=3e,,d,; such
that d,;%0, dy=1 and d,,=0, then R=S[u'] for v =eyx+eyy.

Proof. Set R'=S[%'], that is a simple ring by [4, Lemma 1.4].
Then, au' =e¢,,d,,x+e,,d,,y and wa=ey(xd,; +y)+e€,5xd,, are non-zero
elements of R’()e; R and R’()ey,R respectively. And so, Lemma 2
yields R'2D{ey, es}. Hence, e, =eae,; and e,d,, =e,ae,, are con-
tained in R’, whence d;,=(ey+¢€,.d;5)°€ R’.  Accordingly, e;,=e,,d,+d3"
eR’. Moreover,

w=(321+e12x)2:(621+e12u,312)2} eR'.
Y=(en+6:12Y)" = (ex +€;5u'e;,)"
We obtain therefore R'=S[u']=S[{e;/ s}, x, y]=R.

Lemma 5. Let R be Galois and finite over S, [S:Z]< x, and
n=2. If S contains an element a=>7e;,d,; such that d,,_ ,=x,d,,=y
and d;,,=0 (1=2,...,n), then R=S[u] for u=>%e;_,.

Proof. Set R'=S[w]. Then, by [3, Lemma 6 (i)], we see that

1) D is evidently a separable division algebra over C’, and D=C’[x,y] can be
regarded as a consequence of this fact too.
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R is R’-R-irreducible. Hence, R’ is simple by Lemma 1. Moreover,
as u" '=e,, we see that u* 'au""'=e,y is a non-zero element of
R'Neu R (k=1,---,nand u’=1). And so, Lemma 2 yields R'2{e,,,

-+, e,). Hence, e,y=eyae,, R, whence y=(u+e,,y)" and y* are
contained in R’. Accordingly, e;,=e., ¥y '¢R’ and e,,=(u-+e,,) e, (v
+e,)" 7eR (i,5=1,---,m). And finally, x=(u+e,x)"cR’. We ob-
tain therefore R'=S[u]==S[{e;’s}, z, y]=R.

Now we are at the position to prove the following:

Principal Theorem. Let R be Galois and finite over S. Then
R=S[r] for some r if and only if R is commutative or S<& C.

Proof. The only if part will be almost trivial. And so, we
shall prove here the if part. For the case where [S:Z]= o our
assertion is contained in [4, Corollary 2.17], and for the case where
R is commutative our assertion is well-known. Thus, in what fol-
lows, we shall prove that if [S:Z]< o and SEC then R=S[r] for
some 7. To this end, we shall distinguish two cases:

Case I: S contains merely diagonal elements. In this case, V
contains {ey,---,e,,}, whence we see that the capacity of V coincides
with that of B. And so, without loss of generality, we may assume
that e¢,’s are all contained in V, whence S&.D. Now, our assertion
is a direct consequence of [4, Lemma 2.3].

Case II: S contains a non-diagonal element b=>7e,c;;. Here,
without loss of generality, we may assume that d,,=0 (cf. [8, pp.
62-637). We shall distinguish here further two cases:

1. »>2. By Lemma 8 (i), there exists a regular element »
such that a=rbr-'=3>7e,d,;, d;,_s=%, d,,=y and d,,=0 (¢=2). As
we can easily see that R(=rRr~') is Galois and finite over rSr™*
and CNrSr '=CNS, Lemma 5 yields R=rSr '[u] where u=>7¢,_,.
Hence, we have R=r"'Rr=S[r"'ur].

2. m=2. Since S is generated by regular elements, we may
assume that b is a regular element. And then, by Lemma 38 (ii),
there exists a regular element » such that a=rbr*=>1e,d,;, d,,>0,
dy=1 and d,,=0. If V is not a division ring, then the capacity of
V is equal to 2 (the capacity of R) and our assertion is contained
in Case I. Thus, we may assume that V is a division ring. Now,
noting that R is Galois and finite over #»Sr™*, CNS=CN~rSr-*, and
that Viy(rSr-')=rVr ' is a division ring, we obtain R=7Sr-[u]
for u'=eyux+e,y by Lemma 4. It follows therefore R=7"'Rr
=S[ru'r].
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