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If a simple ring R is Galois and finite over a simple subring S
then R-Su, v] with some conjugate u, v 6, Theorem 1]. In case
R is a division ring we have seen that R--Sr with some r if and
only if R is commutative or S is not contained in the center C of
R [_2, Theorem 3. The purpose of this paper is to prove that this
fact is still valid for simple rings.

Throughout the present paper, R be always a simple ring (with
minimum condition), and S a simple subring of R containing the
identity element of R. And we shall use the following conventions"
R--De, where e’s are matrix units and D--V({e.’s}) a division
ring. And, C, Z and V are the center of R, the center of S and
the centralizer V(S)of S in R respectively. When R is Galois
over S, we denote by ( the Galois group of R/S. Finally, as to
notations and terminologies used in this paper, we follow 4.

In what follows, we shall prove several preliminary lemmas,
which will be needed exclusively for the proof of our principal result.

Lemma 1. Let R be Galois and finite over S. If R’ is an inter-
mediate ring of R/S such that R is R’-R-irreducible then R’ is a
simple ring.

Proof. By 3, Lemma 2, (alR’)R is R-R-irreducible and ca-
nonically R-isomorphic to R, for each a e(. Next, let (rlR’)R be
R-Rr-isomorphic to (alR’)R (a, re(). If a IR’-+rvlR’ under the
isomorphism, then one will easily see that ve V. Moreove, (rv,[R’)R
=(rlR’)R, yields at once vR-R. Hence, v is a regular element of
R. Now, it will be easy to see that r]R’=a]R’. And, the con-
verse is true as well. Finally, one may remark that V(R’) is a
division ring. By the light of these facts, patterning after the proof
of [4, Lemma 1.4, we can prove that R’ is a simple ring. The
details may be left to readers.

Lemma 2. If eRS#O (i-1,..., n) then S {e,. ., e}.
Proof. Each r-e,RS is a non-zero right-ideal of S, and r

+. +r.-r@...(R)r. As the capacity of S never exceeds that of
R, we obtain r+.-.+-S. Hence, e+...+e--l--a+...+a
for some aer. Recalling here that re,R, it follows that e,--a
S (i--1,..., n).
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Lemma 3. Let --ejcj be an element of R with c10.
Let n> 2. If h D k# O D are given, then there exists a

regular element reR such that rbr-’=,Ted, d,._,=h, d,-k and

d=0 (i=2,..., n).
(ii) If n-2 and b is a regular element, then there exists a

regular element rR such that rbr-=[ed, d#O, d-i and

d=O.
Proof. (i) Set h’--c3(h--c_), k’--c2k. And consider the fol-

lowing product r of elementary matrices"
r (-e.+e=nk’- )(1 --e_h’).

(1- ecc2)(1-- e llCn lnV) (1 e21C2nC)
Then, we see that

r--- (1 + e2C2nC72) (1 + e=_c_cV2)(1+e.cc2)
(1 +enn_ )kl ti+ennk’)

(ii) b* (1--ecc5)b(1--ecc5)-= (1--ecci)b(l+ecc5)
e (c, D). Here, b* being a regular element, cec+ c +eece c

* e 1162can not be zero And so (ec+e)b ( ,c +e)- (e,c +e)b* e -+e)--e,,d*+e,cc+e (d*eD). Hence, it will be clear that r

(e,c+e)(1-- encc5) is our desired one.
In the rest of our preliminaries, we shall assume that R is Galois

and finite over S and S" ZJ < . Then, to be easily seen, R is Galois
and finite over C’=CS (cf. [5, Lemma). And so, R is Galois and
finite over " "eC, this means that V(TeC’) D is Galois and
finite over C’. Hence, by [1, Theorem 4 or [6, Theorem lJ, D=C’[x,
y] for some non-zero elements x,

Lemma 4. Let R be Galois and finite over S, [S’ZJ<, V a
division ring, and n-2. If S contains an element a--[ed, such
that d#O, d2--1 and d2--0, then R-S[u’] for u’--e,x+ey.

Proof. Set R’--S[u’, that is a simple ring by [4, Lemma 1.4].
Then, au’--e,,d,x+e,dy and u’a--e,(xd,,+y)+exd, are non-zero
elements of R’D e,,R and R’eR respectively. And so, Lemma 2
yields R’[e,e}. Hence, e2--eae,, and e,2d--e,ae are con-
rained in R’, whence d,-(e+e,d) R’. Accordingly, e,2 e,d, d5
eR’. Moreover,

x (e+ex)-(e+eu’e,) R’.
y (e,+ey) (e+e,u’e)

We obtain therefore R’-S[u’] S[{e’s}, x, y] R.
Lemma 5. Let R be Galois and finite over S, IS" Z] < , and

n2. If S contains an element a-ed such that d=_-x, d,--y
and d=-O (i=2,..., n), then R=S[uJ for u--e_,.

Proof. Set R’-S[u]. Then, by [3, Lemma 6 (i), we see that

1) D is evidently a separable division algebra over C’, and D=C’[x, y] can be
regarded as a consequence of this fact too.
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R is R’-R-irreducible. Hence, R’ is simple by Lemma 1. Moreover,
as u--e, we see that u-au--ey is a non-zero element of
R’eR (k-l, ..., n and u-l). And so, Lemma 2 yields R’[e,.., e}. Hence, ey-eaeeR’, whence y--(u+ey) and y- are
contained in R’. Accordingly, en--eyy-eR and e--(u+e)-e(u
+e)-R (i,j=l, ..., n). And finally, x--(u+ex)R’. We ob-
tain therefore R’=S[u S[{e,’s}, x, y R.

Now we are at the position to prove the following"
Principal Theorem. Let R be Galois and finite over S. Then

R-S[r for some r if and only if R is commutative or S

_
C.

Proof. The only if part will be almost trivial. And so, we
shall prove here the if part. For the case where S:Z- our
assertion is contained in [4, Corollary 2.1, and for the case where
R is commutative our assertion is well-known. Thus, in what fol-
lows, we shall prove that if [S’Z oo and S C then R=S[rJ for
some r. To this end, we shall distinguish two cases"

Case I" S contains merely diagonal elements. In this case, V
contains {e,..., enn}, whence we see that the capacity of V coincides
with that of R. And so, without loss of generality, we may assume
that e,’s are all contained in V, whence SD. Now, our assertion
is a direct consequence of 4, Lemma 2.3.

Case II" S contains a non-diagonal element b- ec. Here,
without loss of generality, we may assume that d4:0 (cf. 3, pp.
62-63). We shall distinguish here further two cases"

1. n>2. By Lemma 3 (i), there exists a regular element r
such that a--rbr--e,d,, d_--x, d-y and dn--O (i=>2). As
we can easily see that R(--rRr-) is Galois and finite over rSr-and CrSr--CS, Lemma 5 yields R-rSr-[u where u--e**_.
Hence, we have R=r-Rr--S[r-ur.

2. n-2. Since S is generated by regular elements, we may
assume that b is a regular element. And then, by Lemma 3 (ii),
there exists a regular element r such that a-rbr--,[e,fl,, d#O,
d.-I and d..-0. If V is not a division ring, then the capacity of
V is equal to 2 (the capacity of R) and our assertion is contained
in Case I. Thus, we may assume that V is a division ring. Now,
noting that R is Galois and finite over rSr-, CS-CrSr-, and
that V(rSr-)-rVr- is a division ring, we obtain R-rSr-u’
for u’--e.x+ e..y by Lemma 4. It follows therefore R=r-Rr
--Sr-u’r.
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