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1. Introduction. A problem of the existence of local solutions
is stated in the following; for a linear partial differential operator
P(x, D) and some neighbourhood of any fixed point /2, when we give
any element f in L(t?), we ask whether the equation P(x, D)u--f
has at least one solution u in L(/2) or not, i.e. the Range of P(x, D)
equals to L(t?)? By the theorem of the range of linear transforma-

tion,) we shall prove the inequality of the type Ilull<=CIIP(x,D)ull
for u belonging to C(/2) which is the dense subset of the domain

of P(x, D). B. Malgrange proved the existence of solutions for the
operators with constant coefficients.) L. HSrmander proved the
inequality for the operators with variable coefficients under the
conditions of the principal type and that imposed on the commutator

P,(x, D)P(x, D)--P(x, D)P,(x, D).),) M. Matsumura proved the
inequality for the operators whose principal parts,) when they are
represented products of singular integral operator) involving first
order differential operators, have factors satisfying the condition of
commutator similar to the HSrmander’s.) As HSrmander’s and Matsu-
mura’s conditions impose on the principal part of P(x,D), these
classes of operators contain, for example, the Laplace and wave
operators but not contain the SchrSdinger operator of a free particle
and heat operator. Now we shall prove the inequality for a class
of operators which involves not only the principal type but also the
SchrSdinger operator of a free particle--but this class does not con-
tain the heat operator, for we consider the operators whose coefficients
are real valued. In the case of complex valued coefficients, we shall
publish later. The idea is based on HSrmander.) This work has been
directly inspired by the uniqueness theorem obtained by Kumanog02

1) [1] Chap. I Lem. 1.1, [7] Chap. III Th. 6 (6).
2) P(x, D) is adjoint operator of P(x, D).
3) [5].
4) P,(x,D) is the principal part of P(x, D), cf. [1], [2].
5) The highest order part.
6) In the sense of CalderSn and Zygmund.
7) [6].
8) [1], E2],
9) [4].
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2. Theorem and Lemmas. Let x--(x,..., x) be a variable point
of n-dimentional Euclidian space R, o and 9 be bounded domains
in R and u, f, etc. be without specific mention complex valued func-
tions of x. m=(m,..., ran) and a=(a,..., an) are multi-integers. By

In" m we denote a_A_ + a__ +... + a and by m0 we denote max m.
With these notations we shall treat the differential operator which
can be written in the form

P(x, D)=P(x, D)+ Q(x, D) and P(x, D)= a.(x)D,
Q(x, D)= a(x)D

where D denotes D’...D-and D= i 3x
$=($,..., $,) denotes a real n-vector, denotes ..... ’. When we
replace D by in the notations of P(x, D), we get P(x, $). P(>(x, )

denotes 3P(x’. (u, v) denotes fu dx where is a complex con-

jugate of v. ]u]] denotes (u, u). For s, t; 0s 1, 0t 1, s t, u (>
and [u((t> denote__,.:=,]]Du and __,]u> respectively. By K(x)

we denote .
Theorem. Let the coecients of P(x, D) be in C" and real

valued and other coecients of P(x,D) be in C,w be the set
Ix: K(x--Xo)} where Xo is any fixed point in R. If there exists
a constant C such that

(2.1) (a) .-:-"C(]P(Xo,)=+1)
for mo2,

(b) the second term in the right member of (2.1) (a) is
ommited, hold for any 0, for mo=l.

Then there exist constants Co, o>0 such that if
(2.2) --":)llD"ullCollp(x, n)ull

mo

V u Co(w) holds.
In the case that all m are equal to too, (2.1) (a), (b) become the
equivalent condition to that of the principal type of real coefficients.)

10) We use the same letters C and 6 for different constants so far as we do not make
confusion.

11) [1] Chap. 4, [2].
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To prove this theorem we use the following series of lemmas.
Lemma 1. For any $, the inequality

(2.3) I" I---<{g()}l":I holds
1Lemma 2. For s,t;0_<s_t_l such that t--s- holds for
m

some k, there exist constants o and C such that if 00 and
ueC(), the inequality

(2.4) u)C(t-)]u]) holds, where is the set {x;K(x)<}.
Lemma 3. Let p(x, D) and q(x, D) be two differential operators
a.(x)D and lb-D" and respectively. If the coefficients

[a:m[=l [a: m[=l-----

of p(x, D) and q(x, D) are in C’, the equality

(p(x, D)v, q(x, D)u)
((x, D)v, (x, D)u)+ (Ca D"v, D.Su)

where C. are in C, and (x, D), (x, D) denote

(x, n)-- a.(x)D, (x, D)-- b(x)D
]a:ml=l l: mt=l-

respectively and u, v in C.
Lemma 4. Let the inequality (2.2) be hold for P(x,D) and

P(x,D) have the coefficients in C. Then for any other operator
with the same part P(x, D) the inequality (2.2) also holds.
Here we remark only that particularly in the case of all m being
equal to m0, these lemmas are equivalent to those of Hhrmander.)

3. Proof of theorem. In what follows we shorten the notations;
P(x, D)-- po and P()(x, D)--
Noting that Leibniz formula gives

P(x, D)(ixu) P()u+ixPu
we get (P()u, P()u)--(Pu, P()u)--(ixPu, P()u). Without loss of
generality let x0 be 0. Using Schwartz inequality and [x[ l in, we get for uCo(w)

[[P()u[[-Re(P(ixu), P()u)+l[[Pu[[ ]]P()u[[.
Next we shall estimate the first term in the right member. Using
lemma 3, we ean write it in the following;

Re(P(ixu), P()u)
Re(P()(ixu), Pu)+Re

,.:
_.

,:

_
(c. D"(ixu), Du)

Re(ixP()u, Pu)+Re(P()u, Pu)

+Re (c. ixD"u, Du)= I-:la- :i=-

= l-:I_ -- :

12) [2], but in Lemma 3 C"o is replaced by C in H6rmander’s.
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where p0() denotes P((x, ). Therefore we get by choosing

constants properly

]lP()u]]<=lt]P(ull ]lPu]l+llP()u[I ]lPu]l+lllPull ]]Pu]]

(-) (-) 0-)

= (_.) u](_.)

_-(c Oul+.= lu[lo_) + Ilullo_)+.= Ilullo__)

and we choose such that for l=(l,...,l,...,l)={K(1)} and

<1 hold, and then by lemma 1 lg{K(1)}=5 is satisfied, and we
can continue

if u e
Summing up each [[P(>u]l, we obtain for other constant C

As m0--max m, we can affirm the inequality

Therefore we get

To prove (2.2), it only remains to show that

(s.1) [[u[[(_)_<cE[po)(x,: D)u[[ u C()<.
For combined with above to inequalies, this gives

(-)
and chosen properly we can take 1--Ca0.
By Lemma 2 if uC(w) <
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lDul <_C%(--’) . IDul , hence

(-)
mO

holds. Hence we get (1-:,+)liDull_e(llpOuli+llpOull).
2

Multiplying both sides, being the coefficients of p0 real, and
applying lemma 4 for p0 and P-P+Q, we affirm the inequality
(2.2) for P.

So we are going to prove the inequality (3.1). By the assump-
tion of the Theorem (2.1) (a) and Parseval formula and Lemma 2
we get

0-)

(o,

Choosing 8 properly small, we get

0-)- _"
0n the other hand if 3 is small, for

fe’(o,D)u-e>(x, DDul C’ [IDullC" lllDull
]a: m] 1-- 1: m[l--

holds.

IIP(>(O, D)ul] <_(llP()(x, D)ull + IlP<)(o, D)u--P()(x, D)ull
k=l k=l

=] IIP()(x= D)ul]-Jcc"llull(_)
For combined this and (3.2) (a) we get (3.1). For too-l, similar
calculi lead to (3.1) immediately. This completes the proof.
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