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In this paper, for the function S() defined in the statement of
Theorem 1 we shall discuss its behaviour in the exterior of an
appropriately large circle with center at the origin and shall show
the orthogonality between its ordinary part and its two principal
parts.

Theorem 13. Let S(,) and {} be the same notations as those
defined in the statement of Theorem 1, and let Mz(p, 0) denote the
maximum of the modulus S()I as ranges over the points of the
circle --P satisfying supl P. Then a necessary and suf-

ficien condition that the ordinary part R(2)of S(2) be a polynomial
in 2 of degree less than or equal to d is that there exist a positive
number K and an appropriately large number such that the in-
equality
(12) M(r, O)Kr
holds for every r satisfying sup[2 ar.

Proof. If we put- S(pe") cos t gt

(n--0, 1, 2,. .)

where p is an arbitrarily given number such that su12l <P< ,
then, as shown in heorem 7, for any subject to the condition
0<<1 we have

1 (a+ib)(/e)ao 1 E (a-ib)(eW)+y +
(" variable),

where the series on the right-hand side converges absolutely and
uniformly, and hence

if.. 1( 1
+
=1

an+ ibn 22n

The final equality here implies that

lao]+ N [a--ib 1 + [a+ib I’ <Ms(p/x, 0),
,1 1

so that



No. 10] Some Applications of the Functional-Representations. V 707

a -ib <=2Mz(pl, O)lg (n-- 1, 2, 3,...).
On the other hand, if we suppose that there exist a positive

number K and an appropriately large number such that the ine-
quality (12) holds for every r satisfying sup l2 ar, the ine-

quality
O)

holds for every r with 0<r<l. In consequence, by taking for p
the above-mentioned a we have

[a--ib[ 2Ka%- (0<<1),
which shows that a--ib=O for n>d. Since, in addition,

R((O) -n[(a-ib) (n-0, 1, 2,. .)
2p"

as shown in the course of the proof of Theorem 6, we obtain the
relation R(n)(O)-O holding for every positive integer n larger than
d. Thus the condition stated in the present theorem is sufficient.

Conversely we now suppose that R(2) is a polynomial in 2 of
degree less than or equal to d. Then

a--ib-- 2pR(n)(O)
n

=0 (n>d),
so that

Ms(p/r, 0)__< a0
2

la /ib l, 

as will be found immediately from the expansion of S(pe/r).
Since, on the other hand,

]aib] 1 f S(peit) dt 2M.(p, O) < (n O, 1, 2,...),

it follows from the just established inequality that

i (p, O)M(p/, O) (i:)M(p, O)+ 1

O)

for an arbitrarily given positive number Z less than unity and for
every with 0gZ. Putting now

M(, 0)--g
(--)

for an arbitrarily prescribed number p with sup]2 ]p, we obtain

therefore
M(/, O) gg(/)

for every positive number less than or equal to Z. This result
shows that the condition under consideration is necessary.
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Thus the theorem has been proved.
Theorem 14. Let S(), R(), and M(p, 0) be the same notations

as those used in the preceding theorem respectively. Then, in order
that R() should be a transcendental integral function of order
d0, it is necessary and sufficient that

lira log log M(p, O) d, d> O.- log p
Proof. Since, by definition, R(2) is either a polynomial (inclusive

of a constant)or a transcendental integral function, to prove this
theorem it is sufficient to show that

(13) lim log log Ms(p, 0) 1- log log M(p, 0),
log p log p

where M(p, 0) denotes the maximum of the modulus R(2)I on the
circle 12] --p.

Let (2) and r(2) denote the first and second principal parts of
S(2) respectively. Since, as shown by the relations (3) and (4) in
the course of the proof of Theorem 4, the relations

1 R(O) 4-
1 ;S(,) "+ ZR(z) - . dr,

1 (0)- 1 f(,) , -- z dt(lz)+(lz)+ - -i
(,--Pet, supl2 <p<

hold for any point z-re in the interior of the circle 121 =p, we have
et
t-eO ( -)1 S(pe) + dtZ(pe/x)--R(pe/x)-- -(0)+ --I S(pet)_dt

2r et--e
and hence

-M(,0) (0<<).S(e%)-R(pe/)[ <= i
Putting :Ms(p, 0)--e() for simplicity, the last relation leads us

1--
to the chain of inequalities
(14) Ms(p/, O) () M(p/, O) M(p/, O) +(),
where M(p/, 0) is a monotone-increasing function of p/ unless R(2)
is a constant. Furthermore we have for any sufficiently small
positive

log log [M(p/, O)--s(x)J--loglogMs(p/, 0)+log(i-- s(x)

> log log Ms(ply, O)--
M(p/, O)
s()

(/, o)(/,o)-s())
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> og og M(/,, 0)- (’)
M(pI, 0) og M(eI,, O)

(fl_ Ms(p/x, 0)log Ms(__p/ 0)_
Ms(ply, O) log Mz(p/,O)--()/

and

log log[Ms(p/, 0)+(x)- log[log Ms(p/,O)+log(l+ Ms(p/, 0))
< loglog Ms(p/, 0)+

M(/,

<og og (/,o)+ (/, o) o,(/, o)
Letting +0, the final two inequalities established above and

(1) ermi us o conclude that the relation (18) holds true, as we
wished to rove.

The roof of the resent theorem is thus complete.
Definition. Let [0,2 be the class of all complex-valued

Lebesgue-measurable funeions, f(pe), defined almost everywhere in
the closed interval 0,2 of 0 for which the Lebesgue integral

]f(oe)gO two funetions and of this classxiss f(peo) (peo)

being considered as identical if and only if f(pe)-(pe) almost
everywhere in the interval [0, 2 of O; and let the inner roduet
(f(pe), (pe)) be defined by the equation (f(pe),

=f(pe)(pe)gO. If f(pe) and g(pe) belong o L0,2 and

(f(pe), (pe))--O, then f(2) and (2) are said to be orthogonal on
the circle [2] --p.

heorem 1. Let S(i), {i}, and R(1) be the same notations as
before, and let (2) and g(1) be the first and second rineial arts
of S(2)respectively. hen R(2) is orthogonal to (2) and
on any eirele [2-p with sull <p< , and (2) is also orthogonal

to (2) on any sueh eirele. oreover the relation

S(pe) [dO -. (pe)+(pe) dO+ R(pe)

is valid for any p subject to the condition sup]2[ (p.
Proof. As shown by (7) in Theorem 6, the equality

ao 1R(pe/x)-- + (a,--ibn)(e/x) (" variable)

holds for any with 0 and for any p with sup]2]
and the series on the right-hand side is absolutely and uniformly
convergent; and moreover, as shown in the course of the proof of
Theorem 1, the equality
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holds for any with 0<< 1 and for any with sup < and

the series on the right-hand side is absolutely and uniformly con-
vergent by virtue of the hypothesis on c. On the other hand, as
indicated in Remark of Theorem 8, we have the equality

1 (a+ ibn) -- c --2 (0" variable).
holding for any r with 0(r(l and for any p with

where the series on the right-hand side converges absolutely and
uniformly. As we already pointed out, however, (2) vanishes neces-
sarily if all the accumulation points of {2} form a countable set.
In addition,

1+(+1)...

and

EEI,,’ >I P 1-]-
a=l

-’a
a=l 8

Consequently the expansion of the right-hand member in (16) is
absolutely and uniformly convergent; and the above-mentioned ex-
pansion of each of the functions R(pe’/), (pe/x), ’(pe/), and its
absolute and uniform convergence enable us to show that

Since this chain of relations holds for any x with O<x<l and
for any p with supine] <p< , the former half of the theorem has

thus been proved. Moreover, by applying this result we obtain

](pe*)+ (pe*) e+ ]R(pe)]],
that is, the relation (15).

With these results, the proof of the theorem is complete.


