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1. Let K be a bounded continuum in ¢-dimensional Euclidian
space and G be a bounded open set containing K. For complex-valued
function w(x) in G, we define ||u(x)||=sup.cx|u(x)|. We consider
classes H,(C) of functions u(x) which are harmonic in G and bounded
in G by the constant C. When we introduce the metric || - || in Hy(C),
we shall denote it by HF(C).

The purpose of the present paper is to compute “e-entropy” and
“e-capacity” of HF(C) for some K and G. The exact formulae for
them are given in 3. Using these results, we can compute the
“functional dimension” of the vector space of harmonic function in 4.

The problem of computing e-entropy of the space of solutions of
partial differential equations was posed by Prof. H. Yoshizawa.

2. Following [8], we shall list definitions which are necessary
to state our results. Let R be a metric space and A a set in R.

DEFINITION 1. A set B in R is called an ¢-net for the set A if
every points of A is at a distance not exceeding ¢ from some point
of B.

DEFINITION 2. A set B in R is called e-separated if the distance
of any distinet points of B are greater than e.

Now we assume the set 4 is totally bounded.

DEFINITION 8. N(e, A) is the minimal number of points in all
possible e-net for A. H(e, A)=log N(e, A) is called e-entropy of the
set A. (log N will always denote the logarithm of the number N in
the base 2.)

DEFINITION 4. M(e, A) is the maximal number of points in all
possible e-separated subsets of the set A. C(e, A)=log M(e, A) is called
the e-capacity of A.

We shall state a simple theorem which will be used later [3].

THEOREM 1. M(2¢, A)<N(e, A)

3. Our result is as follows.

THEOREM. Let K, ={x;>,2,2i<r?} and Gp={x; 3.2, ;<K% in
g-dimensional space. Then

H(e, Hi;(C))={4/q! (log E/r)*"'} (log 1/e)?+O((log 1/¢)*"* log log 1/¢),
C(2¢, Hi:(C))=1{4/q! (log R/r)*"*} (log 1/¢)*+O((log 1/¢)?* log log 1/¢).
(For notations, see 1 and 2.)
REMARK. From Theorem 1 it is sufficient to estimate H(e, A) from
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above (formula in 8) C(2¢, 4) from below (formula in 10).

4. Let G be an arbitrary domain in g¢-dimensional space. H; is
the totality of harmonic function in G. We introduce in H, compact
uniform topology and consider it as linear topological space. The
functional dimension of a linear topological space @ is defined as
follows: ([2])

df @:sgp ir‘}f l—zi_no log log N(e, V/U)/log log 1/

where N(g, V/U)=inf {N; VCUZ, (¢, +U), ¢, €@} and inf and sup are
taken for all neighbourhoods of 0 in @.

Then we obtain df H,=q.

In order to compute df H; we use our results and the following
properties for N(e, H&(C)) which can be proved easily:

N(e, HEH(C))<N(e, Hg(C)) if K;,CK, and G, DG,
Ni(e, HEV=(C)) < N(e, HE(C)) N, HEY(C)).

5. We shall prove our THEOREM in 5-10. First we shall consider
hyperspherical harmonics for the later use. Function u(x)=u(p,s)
of the class A=Hg(C) can be expanded in hyperspherical harmonies
in K, ([1D).

(1) { u(o, 8)=32, (2L + D) (o/7)'u,(s)

u,(8)={I"(p/2) | 4z/** p=r-1 f w(p, ')V P(cos 1) ds’
¢
where ¢=p-+2, S(r) is the sphere of radius 7, y=4£s0s" and (1—2ax

+a?) =372 V().

We list here some properties of the above expansion for later use

(A) We have |V{® (cos7)|<e¢, where c¢,=V®1)=(, p)/(1, p),
A B)y=T(+E)rQ)=22+1)---(A+k—1).

(B) Hyperspherical functions of order ! form a d-dimensional
vector space H,, where d,={({+1, p—1)/1, p)}- Cl+p).

(C) We have f Vi (ecos £LNOs)? ds={4zx?**1/I"(p/2)}-c,/2l+ p.

LEMMA. If y,(s)cH, and f ly(s)|?ds=1, then

(2) | 9(8) | <C{(2l+ D)o}
and C; does not depend on ! (C, will always mean constants which
depend only on p, 7, R, C).

PrOOF. Put u(p, s)=p'y,(s) in (1). If we use Schwartz’ inequality
and (C), we get (2).

6. We define a norm for bounded functions on unit sphere by
[|u(s)||'=8upsescy| #(s)|. Then we get two inequalities for expansion
).

(3) l|wi(s) I’ <Cac} || (o, 5) ||, where ¢;={c/2l+p}*
(4) lu(o, 8) | <S%Zo(20+p) [Ju,(8) ||
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Because u(p, s)e A is harmonic in G, it has an expansion of the
form (1) in K (R'<R), where r is substituted by R’. By equating
o”s coefficients in this expansion and in the original one, we get

(5)  w(s)={(p/2),/4a"*+1}- R'-?>~*(r/R')! f u(p, VP (cos 7) ds'.
SCR

We obtain from (5) and |u(e, 8)|<C in Gy, [|u(s)||<Csei(r/R).
Because R'< R is arbitrary, we get finally
(6) Nu(s)]'<Csc,e ™, where e"=R/r.

7. We define 7 as the smallest number that satisfies >3,=.(2l+ p)

XCycie " <g/2. Because left side of the above inequality is smaller
than C,n" e " for some N, we get the following estimation of n:
(7) n=log 1/¢/ h log e+O(log log 1/¢).
For such =, if we define %(p, s) by %u(p, 8)=r=3(2l+ p)(o/7)'u,(s) then
A\z{ﬁ;ueA} is an ¢/2-net for A. We define A, by {u,(s); u(p, s)c A}.
If we put &' =¢/2/n(n+p—1) and if we construct &-net B, for A,
in H, (in metric ||-]|"), then {37230(21+ p)(o/7)'u,(s); u,€ B,} will be &/2-net
for A, so e-net for A.

If number of elements B, is N,, N(¢, A) <TI7=4N,.

8. We construct B, and evaluate N,. Let {yi(s), 1<k<d;} be
complete orthonormal system in H,, and we shall expand u,(s)€A4, in

O
()= 34, bh(s), where b= [u (s)i(o) ds.

From (6), we obtain for u,(s)c4,
(8) |65 <Cicie™™.

If we consider the class of elements of H;, whose b, can be written
as bi=mis+m"ioy—1 (where mi, m" are integers, and 6=(2¢'/V2)/
d,C{@l+p) ¢}¥), then from the lemma, it is an &-net for A,

From (8), it is sufficient to choose |mi|<C,c;e "/d. So

N, <{2[C, c; e~ "[a]}*".
Hi(e, A) <72 log Ny=2>7232d, log (Cs m(n+p—1) d,c,e™"[e)
=4 (log 1/)7*%/ (h log )*** Of(log 1/e)?** log log 1/e).
(p+2)!

9. We now derive lower estimate for C(2¢, A). For this purpose
we use two facts:

a) A constant Cg can be taken such that

(9) | b4 | <Cef1/d, (2l+p) et} d e 4, 4>0

implies u(x)=wu(p, s)e A, where

(10) { u(p, 8)=>"20 2L+ ) (o/r) u,(s),
u(8) =%y B, YA(S).

Proor. Under the assumption on &%, from lemma we obtain
|u(s)||'<Cq-Cy-de " 9421+ p. We have, in G,
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[u(o, 8) | <502, 2L+ ) (B/7) ||uy(8) [|' < Cg- C13,Z, de™ ' =Cy- Cy - d[1—e™ 7.
This can be made <C, where C is independent of 4.

B) In expansion (10), we have
(11) |81 <Cy ] .

This is a consequence of |b|<||u,(s)||" and (3).

10. Now put 4=hlog1/e and fix n (how to take » will be
shown later). The set of u(p, 8)=>",2, 21+ p)(o/r)'u,(s) is a 2e-separated
subset of A, if wu,(s)="9%, (si++v—15%)2eC clyi(s) where si, 8% are
integers which satisfy
(12) |84 <N 2) CofL/dy(2l+p) et e 1/ 26.Cy .

Now n is defined as the largest of natural numbers ! that make
right hand side of (12) not smaller than 1. Then » can be estimated
as follows: m=log 1/¢/h log e4+O(log log 1/¢).

If we put M}=2[(1,/V2) Ce{l/all(2l—i—p)gcli’}zle“"+ 2/ 2e-Cypecy]+1,
we get

M(2¢, A)> Hzgonkd——llebz-
Hence
C(2¢, A)>>"m2d, log (Ci{1/d, (2l+ p)c,-e}d e~ @+ %)
={4/(p+2)"} (log 1/)?**/(h log €)?**+O{(log 1/¢)*** log log 1/e}.
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