36. On the Absolute Nörlund Summability Factors of a Fourier Series

By H. P. Dikshit
(Comm. by Kinjirô Kunugi, M.J.A., March 12, 1963)

1.1. Definitions. Let $\sum u_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} ; \quad P_{-1}=p_{-1}=0 .
$$

The sequence-to-sequence transformation:

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} P_{n-\nu} u_{\nu}, \quad\left(P_{n} \neq 0\right), \tag{1.1.1.}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund means of the sequence $\left\{s_{n}\right\}$, generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series $\sum u_{n}$ is said to be summable $\left(N, p_{n}\right)$ to the sum s if $\lim _{n \rightarrow \infty} t_{n}$ exists and is equal to s, and is said to be absolutely summable $\left(N, p_{n}\right)$, or $\left|N, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation, ${ }^{1)}$ that is, the series $\sum\left|t_{n}-t_{n-1}\right|$ is convergent. In the special case in which

$$
\begin{equation*}
p_{n}=1 /(n+1) \tag{1.1.2}
\end{equation*}
$$

the Nörlund mean reduces to the Harmonic mean.
Thus summability $\left|N, p_{n}\right|$, where p_{n} is defined by (1.1.2) is the same as the absolute Harmonic summability.
1.2. Let $f(t)$ be a periodic function, with period 2π, and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Then the Fourier series of $f(t)$ is

$$
\begin{equation*}
\sum\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum A_{n}(t) \tag{1.2.1}
\end{equation*}
$$

We write

$$
\begin{aligned}
\phi(t)= & \frac{1}{2}\{f(x+t)+f(x-t)\}, \\
\tau= & {[1 / t], \text { i.e., the greatest integer contained in } 1 / t . } \\
K= & \text { an absolute constant, not necessarily the same at } \\
& \text { each occurrence. }
\end{aligned}
$$

2.1. We establish the following theorem.

Theorem. If $\phi(t) \in B V(0, \pi)$, and $\left\{\lambda_{n}^{\prime}\right\}$, where $\lambda_{n}^{\prime}=\frac{\lambda_{n}}{n}$, is monotonic increasing then $\sum_{n=1}^{\infty} n A_{n}(t) / \lambda_{n}$ is summable $\left|N, p_{n}\right|$, provided $\left\{p_{n}\right\}$ satisfies the following conditions:
(i) $\left\{p_{n}\right\}$ is monotomic diminishing, and P_{n} is monotonic in-

1) Symbolically, $\left\{t_{n}\right\} \in B V$; similarly by ' $f(x) \in B V(h, k)$ ' we shall mean that $f(x)$ is a function of bounded variation over the interval (h, k).
creasing, tending to ∞ with n;
(ii) there exists a monotonic increasing function of n, μ_{n} say, $\mu_{n}=\mu_{n}^{*}+1(<n-1$, for sufficiently large $n)$, such that
(a) $P_{n}-P_{k}=O(1)$, for $k>\left[\mu_{n}^{*}\right]$, as $n \rightarrow \infty$;
(b) $\frac{P_{n}}{p_{n}}=O\left(\lambda_{n-\left[\mu_{n}^{*}\right]}\right)$;
(c) $\sum_{n}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{\mu_{n} \leq k<n} p_{k} / \lambda_{n-k} \quad$ is convergent;
(d) $\sum_{\left[\mu_{n}\right] \leq k<n}\left|\Delta\left\{P_{k}\left(p_{k}-p_{n}\right\} / \lambda_{n-k}\right\}\right|=O\left(P_{n}^{2} / n^{2}\right)$,
(e) $\sum_{0 \leq k<\mu_{n}^{*}}\left|\Delta\left\{\left(\frac{P_{n}}{p_{n}}-\frac{P_{k}}{p_{k}}\right) \frac{1}{\lambda_{n-k}}\right\}\right|=O(1)$, as $n \rightarrow \infty$.

It may be remarked that the following theorem due to Varshney follows from our theorem in the case in which $\lambda_{n}=n \log (n+1)$ and $p_{n}=1 /(n+1)$.

Theorem A. ${ }^{2)}$ If $\phi(t) \in B V(0, \pi)$ then the series $\sum A_{n}(t) / \log (n+1)$ is absolutely summable by Harmonic means.
2.2. We require the following lemmas for the proof of the theorem.

Lemma 1. ${ }^{3)}$ If p_{n} is non-negative and non-increasing, then, for $0 \leq a \leq b \leq \infty, 0 \leq t \leq \pi$, and any n, we have

$$
\left|\sum_{k=a}^{b} p_{k} \sin (n-k) t\right| \leq K P_{\tau}
$$

Lemma 2. For any integers a and b, we have

$$
\sum_{n=a}^{b} \sin n t=O(1 / t)
$$

Lemma 3. If $P_{n} \rightarrow \infty$, as $n \rightarrow \infty$, then

$$
\sum_{m+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(1 / P_{m}\right)
$$

as $m \rightarrow \infty$.
The proofs of Lemmas 2 and 3 are easy.
2.3. Proof of the theorem. Writing $u_{\nu}=\nu A_{\nu}(t) / \lambda_{\nu}$, and

$$
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} P_{n-\nu} u_{\nu}
$$

we have

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{\nu=0}^{n-1}\left(\frac{P_{\nu}}{P_{n}}-\frac{P_{\nu-1}}{P_{n-1}}\right) u_{n-\nu} \\
& =\frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) u_{n-\nu} .
\end{aligned}
$$

Now, since

[^0]\[

$$
\begin{aligned}
A_{n}(t) & =\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t \\
t_{n}-t_{n-1} & =\frac{2}{\pi} \int_{0}^{\pi} \phi(t)\left(\frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{(n-k) \cos (n-k) t}{\lambda_{n-k}}\right) d t
\end{aligned}
$$
\]

Thus, in order to prove the theorem, we have to show that

$$
\sum_{n}\left|\int_{0}^{\pi} \phi(t) g(n, t) d t\right|<\infty,
$$

where

$$
g(n, t)=\frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{(n-k) \cos (n-k) t}{\lambda_{n-k}} .
$$

We observe that

$$
\int_{0}^{\pi} \phi(t) g(n, t) d t=-\int_{0}^{\pi}\left(\int_{0}^{t} g(n, u) d u\right) d \phi(t)
$$

and

$$
\sum_{n}\left|\int_{0}^{\pi}\left(\int_{0}^{t} g(n, u) d u\right) d \phi(t)\right| \leq \int_{0}^{\pi}|d \phi(t)|\left\{\left|\sum_{n}\left(\int_{0}^{t} g(n, u) d u\right)\right|\right\} .
$$

But by hypothesis $\int_{0}^{\pi}|d \phi(t)|<\infty$. Thus it is enough to show that, uniformly in $0<t \leq \pi$,

$$
\sum=\sum_{n}\left|\int_{0}^{t} g(n, u) d u\right|=O(1)
$$

We have

$$
\begin{aligned}
\sum= & \sum_{n} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
\leq & \sum_{1}^{\tau} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
& +\sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{\left[\mu_{n}^{*}\right]}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
& +\sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=\left[\mu_{n}\right]}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
= & \sum_{1}+\sum_{2}+\sum_{3}, \text { say. }
\end{aligned}
$$

Now since

$$
|\sin (n-k) t| \leq(n-k) t
$$

and on account of the hypothesis (i), $P_{n} p_{k} \geqq P_{k} p_{n}$ for $k \leq n$, we have

$$
\begin{aligned}
\sum_{1} & =\sum_{1}^{\tau} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right) \frac{\sin (n-k) t}{(n-k) \lambda_{n-k}^{\prime}}\right| \\
& \leq K \cdot \frac{1}{\lambda_{1}^{\prime}} \cdot t \sum_{1}^{\tau} \frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1} p_{k} P_{n} \\
& \leq K t \cdot \sum_{1}^{\tau} 1 \\
& \leq K .
\end{aligned}
$$

Applying Abel's transformation, we get

$$
\begin{aligned}
& \sum_{2}= \sum_{\tau+1}^{\infty} \\
&=\frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{k=0}^{\left[\mu_{n}^{*}\right]}\left(\frac{P_{n}}{p_{n}}-\frac{P_{k}}{p_{k}}\right) \frac{p_{k}}{\lambda_{n-k}} \sin (n-k) t\right| \\
& \leq \sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{k=0}^{\left[\mu_{n}^{*}\right]-1} \Delta\left\{\left(\frac{P_{n}}{p_{n}}-\frac{P_{k}}{p_{k}}\right) \frac{1}{\lambda_{n-k}}\right\} \sum_{k=0}^{\infty} p_{k} \sin (n-\kappa) t\right| \\
&+\sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \left\lvert\,\left(\frac{P_{n}}{p_{n}}-\frac{\left.P_{\left[\mu_{n}^{*}\right]}^{p_{\left[\mu_{n}^{*}\right]}}\right) \left.\frac{1}{\left.\lambda_{n-\left[\mu_{n}^{*}\right]}\right]} \sum_{k=0}^{\left[\mu_{n}^{*}\right]} p_{k} \sin (n-k) t \right\rvert\,}{\leq} \begin{array}{l}
K P_{\tau} \sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=0}^{\left[\mu_{n}^{*}\right]-1}\left|\Delta\left\{\left(\frac{P_{n}}{p_{n}}-\frac{P_{k}}{p_{k}}\right) \frac{1}{\lambda_{n-k}}\right\}\right| \\
\\
\\
+K P_{\tau} \sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{\left[\mu_{n}^{*}\right]}}{p_{\left[\mu_{n}^{*}\right]}}\right) \frac{1}{\lambda_{n-\left[\mu_{n}^{*}\right]}} \\
\leq \\
\leq K P_{\tau} \sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}+K P_{\tau} \sum_{\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \frac{P_{n}}{p_{n}} \frac{1}{\lambda_{n-\left[\mu_{n}^{*}\right]}} \\
\end{array}\right.\right.
\end{aligned}
$$

by virtue of hypotheses (e), (b), and lemma 3.
Now we proceed to show that $\sum_{3}=O(1)$.
We have

$$
\begin{aligned}
\sum_{3} \leq & \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=\left[\mu_{n}\right]}^{n-1}\left(P_{n}-P_{k}\right) p_{k} \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
& +\sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=\left[\mu_{n}\right]}^{n-1} P_{k}\left(p_{k}-p_{n}\right) \frac{\sin (n-k) t}{\lambda_{n-k}}\right| \\
= & \sum_{31}+\sum_{32}, \text { say. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\sum_{31} & =\sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=\left[\mu_{n}\right]}^{n-1}\left(P_{n}-P_{k}\right) \sin (n-k) t \frac{p_{k}}{\lambda_{n-k}}\right| \\
& \leq K \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left[\sum_{k=\left[\mu_{n}\right]}^{n-1} \frac{p_{k}}{\lambda_{n-k}}\right] \\
& \leq K,
\end{aligned}
$$

by hypotheses (a) and (c).
Applying Abel's transformation to the inner sum in we have, by Lemma 2,

$$
\begin{aligned}
\sum_{32} \leq & \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=\left[\mu_{n}\right]}^{n-2} \Delta\left\{\frac{P_{k}\left(p_{k}-p_{n}\right)}{\lambda_{n-k}}\right\} \sum_{\kappa=0}^{k} \sin (n-\kappa) t\right| \\
& +\sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\frac{P_{n-1}\left(p_{n-1}-p_{n}\right)}{\lambda_{1}} \sum_{k=0}^{n-1} \sin (n-k) t\right| \\
\leqq & K \tau \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left[\sum_{k=\left[\mu_{n}\right]}^{n-2}\left|\Delta\left\{\frac{P_{k}\left(p_{k}-p_{n}\right)}{\lambda_{n-k}}\right\}\right|\right] \\
& +K \tau \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \cdot P_{n-1}\left(p_{n-1}-p_{n}\right) \\
= & \sum_{321}+\sum_{322}, \text { say. }
\end{aligned}
$$

Also, by hypothesis (d),

$$
\sum_{321} \leq K \tau \sum_{\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \frac{P_{n}^{2}}{n^{2}}
$$

$$
\begin{aligned}
& \leqq K \tau \sum_{\tau+1}^{\infty} \frac{1}{n^{2}} \\
& \leq K
\end{aligned}
$$

Now since p_{n} is monotonic decreasing, while P_{n} is monotonic increasing, $p_{n} / P_{n}<p_{n-1} / P_{n-1}$, so that p_{n} / P_{n} is monotonic decreasing, and $n p_{n} \leq P_{n}$.

Hence

$$
\begin{aligned}
\sum_{322} & =K \tau \sum_{\tau+1}^{\infty}\left(\frac{p_{n-1}}{P_{n}}-\frac{p_{n}}{P_{n}}\right) \\
& <K \tau \sum_{\tau+1}^{\infty}\left(\frac{p_{n-1}}{P_{n-1}}-\frac{p_{n}}{P_{n}}\right) \\
& \leqq K \tau p_{\tau} / P_{\tau} \\
& \leqq K .
\end{aligned}
$$

This completes the proof of our theorem.
My warmest thanks are due to Dr. T. Pati for his kind interest in the preparation of this paper.

References

[1] McFadden, Leonard: Absolute Nörlund summability, Duke Math. Jour., 9, 543568 (1942).
[2] Varshney, 0. P.: On the absolute Harmonic summability of a series related to a Fourier series, Proc. Amer. Math. Soc., 10, 784-789 (1959).

[^0]: 2) Varshney [2].
 3) McFad en [1].
