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1. If ¢(r) is a function of the distance » from the origin of
h-dimensional Euclidean space, then the Fourier transform of ¢(r),
that is the integral transform by the kernel function exp (2z,(x,¥,-+
+ .- +2,9,), is also a function of » and is expressed as following:

To(r) =205 [" T4, @ero)oteo)do,

L]
where J,(x) is Bessel function ([1] p. 69, Theorem 40).
By the general theory of Fourier transform the linear operator
T has the properties:
(a) T transforms ¢(ur) to Iul‘”Tgo(%—) if ux0,

(b) T transforms e ™" to =™,
(e) there exists a mumber series {a,, a,---} which satisfies

ian¢(J—ﬂ)= i a,To(yn) (Poisson summation formula),
n= n=0

(d) T?p=¢ (the inversion formula),
and

() [ 1Te(r)rr**dr= [ o(r) |**~*dr (Parseval formula).
0 0

In his paper [2] Bochner proved that the properties (a), (b) and
(¢) characterize the operator T.

We shall describe here the theorem of Bochner in somewhat
modified form:

Let us denote by P, the family of all functions ¢(x) on [0, o)

such that <}%§>r¢(w) exists at 0 for any » and every derivative of

o(x) decreases rapidly as z tends to infinity.
Theorem of Bochner. Let T be a linear operator from P, to
B, which satisfies the following conditions:

(A) T transforms ¢o(ux) to |u|"‘Tgo<ﬁ> for any u=x0, where
h s a positive constant, “

(B) e_g_;w‘ 18 an eigenfunction of T, where A is a positive con-
stant, and

(C) there exists number series {a, @, as,--+} such that i laa|

. Al
converges for a positive number s, and
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S ag(n)= 30, Te(n)
Jor any o(x) in B, then To(x) is equal to the Bochner transform
T, o(@)=2T 45" f “Jn (i"_”-xt> t70(t) dt
2 . 2 A
of o(x) or equal to —T, ,0(x), and the Mellin transform of T; ,o(x)
8 @(h—s)(i—”)ﬁﬂ%l“(—;—) /F< hgs> where @(s) is the Mellin trans-

form of o(x).

At this opportunity it may be remarked that the result of our
previous paper [3] is a direct consequence of Bochner’s theory.

In the following we shall investigate the properties of T',, and
give a generalization of the central limit theorem in the probability
theory (Proposition 9).

2. Using Bochner’s theorem it is easily proved that the Mellin
transform of T%¢ is equal to @(s). Therefore we get

Proposition 1. T, (T, ,0)=¢.

Moreover an analogy of Parseval formula can be stated as follows:

Proposition 2. f Tw 1| T, (@) P de= f " 21 (@) |2 da.

0

0
Proof. We have
f%Hmm@mx

<4ﬁ> f wdi f A 1(———wt>tﬂgo(t) dt- f Js_ (—wu>u2¢(u) du

= f w? gw) du f Ts_,(ou) ada f J;._l(xt)t(t"lgo(t))dt

By Hankel’s inversion formula (Tltchmarsh [4] p. 241, Watson [5],
p. 456 (1)) this is equal to

© A__ &
f w? o(u)-u 2o(u) du.

0
Corollary. f “greiT 1@ T, () de= f " lo(x)Yr(x) d.
0 0

Now we shall give a relation between T,, and T, ,.,. Because

—j—x(x”J,(w))zx"J ,—1(%) we have, integrating by parts,
_a
T, p(@)=—u7? f Ja (——wt)t” ¢'(t) dt.
0
Thus we have

Proposition 3. For >0, T, , f(¢) is equal to —4i Tm”{% f(x)} (@)
T
if }x_ f(x) is defined at [0, ).
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Then, we estimate the value of T, ,f():

T, .f(x)= —-{—TE—T;, nez {—x‘;—w—f (x)} (Proposition 8)

=(—2) T {5 ) @)
ofe b [ 4 Y o)
because J. p(w)::O(x"';' ). '

Proposition 4. Let h be a positive number, r be a non-negative
integer and f(x) be a function such that

)7
Tx,hf(x)=0<x"%”r+é‘of K tdt )

Using the identity
L@ T @)=—a7J,. @)
we can calculate the derivative of T, ,o(x). Namely,

d _ d 4r o By 4r

G Ty =g (5 [75730, (o)A etrar)
. 47!' - 47t -— ~1 4r L2
S

= —%ExTz,Mzﬁo(w)*

+r— 1 .
2dt exists. Then

Hat).

Proposition 5. %(T;,m(w)#—i—”ﬂvTa,mso(w)-

The existence of the following proposition is the reason why we
27 22

select in (B) the special eigenfunction ¢ *

Proposition 6. If ¢(x) is an eigenfunction with respect to T, ,

27 g0

and T, ,.. belonging to Py, then ¢(x) is of the form ce 7

Proof. Let

T;no@)=ap() and T, ,..¢(x)=po(x).

Then « and S8 are equal to 1 or —1 by Proposition 1, and a¢’(x)

:—_42_77-90‘850(90) by Proposition 5. (Q.E.D.)

Now we have to introduce a topology on the linear space P,.
We take as a basis of neighbourhoods of 0 the family of the sets
of the following type:

V(n, m, e)= {so ePy:

A+~ Vo)<

for any >0 and for g=0,1,2,--o,n},
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where n, m are arbitrary non-negative integers and ¢ is an arbitrary
positive number. Concerning the Theorem of Bochner, we shall add
the following

Proposition 7. (¢, V) —> ¢y is a continuous linear mapping from
Py X P, to P, and ¢—T, ,¢ is a continuous linear mapping from P, onto
itself.

Proof. The continuity of (¢, )¢y is a direct consequence of
the definition of our topology. By Proposition 5 it is enough to prove
the remainder of the proposition if we show for any given g, I and
¢ there exists a neighbourhood of 0 such that |(1+4+2)'T, ,¢(x)|<e for
all £>0. In the case #>1 this is proved by Proposition 4 and in
the case 0<x<1 by the continuity of x~*J,(x).

4. For two functions ¢(,---, x,) and Y(,,- - -, x,) in h-variables
the convolution of ¢ and  is defined by the formula

@*#f(wv-“,wh)=f'“fs0(x1—t1w-wwh—th)\b(tv-“,th) dt,- - -dt,.

If ¢ and ¢ depend only on x=va!+-..-+a2, then ¢y is also a func-
tion in 2 only. And it is well known, if we regard ¢(x) and +~(x)
as functions in x,
Tz,n(?’*‘l") = Tz,h§0 . Tz,h‘P'

Now we shall define the (4, 2) convolution *,, for any pair of

positive numbers 2 and & using the operator T, ,, that is,
ox, 0 =T (Topp Tanb)-

Proposition 8. (1, k) convolution has the properties:

(i) if 2=2 and h is a natural number then x,, is identical
with ordinary h-dimensional convolution,

(ii) Tz,h(SD*z,h‘P):Tx,nSD'Tz,n‘#,

(iii) 4t s associative and commutative,

(iv) (¢, ¥)=>0*, ¥ 18 a continuous bilinear mapping Py X P, to
Be, and

h

_ 1 27 \? [

(V) rant(0)= F<£>( A AR LCHCLE
2

Proof. We get (i), (iii) directly from the definition of *,,, (ii)

by Proposition 1 and (iv) is a consequence of Proposition 7.
Finally we shall prove (v). By the Theorem of Bochner we have

Tz,hgo(O)z(zl_”)!; F(Z) of "gn-1p(8) dt for any ¢ in P,.
2

¢*1,h«1f<0>=(~22£)% [T O T dt

(5

Therefore
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(B L [egnwnd
Oy

by Corollary of Proposition 2. (QE.D.)

Now we shall give an analogy of the central limit theorem in
the probability theory.

1
r(3)
2
27 T

> f - 2" p(x)dx. Let a be different from 0 and
0

Proposition 9. Put a=

—22—> f P p(@)ds and

p=— 1

h (T
r(3+1)
5 +
af be greater than 0. Put
2 _
‘#n=<n7ﬂ>2 TR AT RARRL I RY 2 <'\/—7—Z-(‘[296> .
n

_27 e . .
Then +, converges to e 7 as n tends to infinity.
Proof. First we shall ecalculate the McLaurin expansion of
T, ,o(x). By Proposition 5 we have
d

2 4
L T000=0, LT, (0= 25T, 1,000),

3
Cglca Tz,h§0(0)=0
and
d* 4 47[ 3
dz =T np(@)=3(— T1 e a()—6( — 90 T, n+690(x)+ x T3 s ().
Therefore
T 0(@) = Tap (O =251, (00 + RO
=a— Tﬁw2+R(0x)w4,
where R(x) is a locally uniformly bounded function. Then we get

Tz,n“”'n(x)za'_nTx,h(go*l,h sk h§0)< n‘3>

(e is))
=(1-E-Lro(L))

and the last term tends to e_Tmz. Because T, , is continuous on P,

27 .2 27 9

V=T, (Ts,¥,) converges to T;,e & =e +
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