No. 10]

165. On the Uniqueness of Balayaged Measures

By Masanori Kishi

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1963)

Introduction. Let Ω be a locally compact Hausdorff space, every compact subset of which is separable, and G(x, y) be a positive continuous (in the extended sense) kernel on Ω . In [2], we proved that a regular symmetric balayable kernel G satisfies the U- and BU-principles²⁾ if and only if it is non-degenerate, that is, for any different points x_1 and x_2 in Ω ,

 $G(x, x_1)/G(x, x_2) \equiv \text{any constant in } \Omega$.

In this paper we shall extend this result to non-symmetric kernels.

§1. Non-degeneracy. Theorem 1. If G satisfies the U- or BU-principle, it is non-degenerate.

This is evident.

Theorem 2. Let G be non-degenerate and satisfy

- (i) the domination principle or
- (ii) the balayage principle and the continuity principle. Then its adjoint kernel \check{G} is non-degenerate.

Proof. If G satisfies the condition (ii), then it satisfies (i).³⁾ Therefore we may assume that G satisfies the domination principle. Contrary suppose that \check{G} is degenerate. Then there are different points x_1 and x_2 such that $G(x_1, x) = aG(x_2, x)$ for any point x in Ω with a positive constant a. Then $G(x_1, x_1)$ and $G(x_2, x_2)$ are finite and $G\varepsilon_{x_1}(x_i) = bG\varepsilon_{x_2}(x_i)$ (i=1, 2) with $b=G(x_1, x_1)/G(x_1, x_2)$. Hence by the domination principle

$$G\varepsilon_{x_1}=bG\varepsilon_{x_2}$$
 in Ω .

This shows that G is degenerate.

Corollary. The adjoint kernel \mathring{G} is non-degenerate if and only if G is non-degenerate, provided that

- (i) G satisfies the domination principle and \check{G} satisfies the continuity principle or
- (ii) G satisfies the balayage principle and the continuity principle.

¹⁾ We use the same notations as in $\lceil 3 \rceil$.

²⁾ The *U*-principle means that if *G*-potentials of positive measures with compact support coincide with each other *G*-p.p.p. in Ω , then the measures are identical.

The BU-principle means that the G-balayaged measure is uniquely determined by a given positive measure and a compact set.

³⁾ Cf. [3, 4].

§ 2. U-principle. Let K be a compact subset of Ω and $\mathfrak{C}(K)$ be the space of all finite continuous functions on K with the uniform convergence topology. We denote by $\mathfrak{D}(K)$ the subspace of $\mathfrak{C}(K)$ consisting of functions f which are \check{G} -potentials of signed measures, that is, $f = \check{G}\mu_1 - \check{G}\mu_2$ with $\mu_1, \mu_2 \in \mathfrak{M}_0$.

Theorem 3. Let G satisfy the balayage principle and the continuity principle. If G is non-degenerate and K is \check{G} -regular, \check{S} then $\mathfrak{D}(K)$ is dense in $\mathfrak{E}(K)$.

Proof. This follows from the following two remarks.

(a) $\mathfrak{D}(K)$ is closed with respect to the operations \vee and \wedge . In fact, let $\check{G}\mu_1$ and $\check{G}\mu_2$ be \check{G} -potentials in $\mathfrak{D}(K)$ with $\mu_i \in \mathfrak{M}_0$ (i=1,2) and put $u=\check{G}\mu_1 \wedge \check{G}\mu_2$. By the existence theorem there exists a positive measure μ , supported by K, such that

$$\check{G}\mu \ge u$$
 G-p.p.p. on K , $\check{G}\mu \le u$ on $S\mu$.

Since G satisfies the balayage principle and the continuity principle, \check{G} satisfies the domination principle.⁸⁾ Hence by the above inequalities we obtain

$$\check{G}\mu \leq u$$
 in Ω , $\check{G}\mu = u$ G -p.p.p. on K .

Moreover by the regularity of K we have

$$\check{G}\mu \geq u$$
 on K .

Consequently $\check{G}\mu = u$ on K. This shows that $\check{G}\mu_1 \wedge \check{G}\mu_2$ belongs to $\mathfrak{D}(K)$. From this it follows immediately that $\mathfrak{D}(K)$ is closed with respect to \vee and \wedge .

(b) For any different two points x_1 , x_2 on K and any real numbers a_1 , a_2 , there exists a function f in $\mathfrak{D}(K)$ such that $f(x_i)=a_i$ (i=1,2). In fact, G being non-degenerate, there exist different two points y_1 and y_2 on K such that

$$\frac{y_i \neq x_1, \ x_2}{G(y_1, \ x_1)} \neq \frac{G(y_2, \ x_1)}{G(y_2, \ x_2)}.$$

We can take a positive measure λ such that $\check{G}\lambda$ belongs to $\mathfrak{D}(K)$ and $\check{G}\lambda(x_i) > \check{G}\varepsilon_{\nu_1}(x_i)$ (i=1,2). Then there exists a positive measure μ_1 ,

⁴⁾ \mathfrak{M}_0 is the totality of positive measures with compact support.

⁵⁾ Namely an inequality $\check{G}\mu \geq h$ G-p.p.p. on K for $\mu \in \mathfrak{M}_0$ and a positive finite continuous function h on K implies $\check{G}\mu \geq h$ everywhere on K.

⁶⁾ $(f \lor g)(x) = \max \{f(x), g(x)\}, (f \land g)(x) = \min \{f(x), g(x)\}.$

⁷⁾ Cf. [3, 4].

⁸⁾ Cf. [3, 4].

supported by K, such that $\check{G}\mu_1 \in \mathfrak{D}(K)$, $\check{G}\mu_1 = \check{G}\lambda \wedge \check{G}\varepsilon_{\nu_1}$ on K, and hence $\check{G}\mu_1(x_i) = \check{G}\varepsilon_{\nu_1}(x_i)$. Similarly we have a positive measure μ_2 , supported by K, such that $\check{G}\mu_2 \in \mathfrak{D}(K)$ and $\check{G}\mu_2(x_i) = \check{G}\varepsilon_{\nu_2}(x_i)$ (i=1,2).

Now we take real numbers t_1 and t_2 such that

$$t_1 \check{G} \mu_1(x_1) + t_2 \check{G} \mu_2(x_1) = a_1$$

 $t_1 \check{G} \mu_1(x_2) + t_2 \check{G} \mu_2(x_2) = a_2$.

Then $f = t_1 \check{G} \mu_1 + t_2 \check{G} \mu_2$ belongs to $\mathfrak{D}(K)$ and $f(x_i) = a_i$. This proves (b).

Our theorem follows from (a) and (b) by the theorem of Weierstrass-Stone.90

Theorem 4. Let G satisfy the balayage principle and the continuity principle, and \check{G} be regular. If G is non-degenerate, then G satisfies the U-principle.

Proof. Let $G\nu_1 = G\nu_2$ G-p.p.p. in Ω with $\nu_1, \nu_2 \in \mathfrak{M}_0$. We take a \check{G} -regular compact set K containing $S\nu_1 \bigcup S\nu_2$. Then by the preceding theorem $\mathfrak{D}(K)$ is dense in $\mathfrak{C}(K)$. From this follows immediately our theorem.

§3. Uniqueness of balayaged measures. Lemma. Let G satisfy the balayage principle and the continuity principle, and let \check{G} be regular. Then G-balayaged potentials are uniquely determined.

Proof. Let $G\nu_i$ (i=1,2) be G-balayaged potentials of ν on K. Then $G\nu_1=G\nu_2$ G-p.p.p. on K. Take a point x_0 in $\Omega-K$. As \check{G} is regular, there exists a \check{G} -regular compact set $K' \supset K$ which does not contain x_0 . Then \check{G} -balayaged potential $\check{G}\varepsilon'$ of ε_{x_0} on K' coincides everywhere on K' with $\check{G}\varepsilon_{x_0}$. Consequently

$$G
u_1(x_0) = \int \check{G} arepsilon_{x_0} \, d
u_1 = \int \check{G} arepsilon' \, d
u_1 = \int G
u_1 \, d
olimins' = \int G
u_2 \, d
olimins' = G
u_2(x_0).$$

This proves that $G\nu_1=G\nu_2$ everywhere in $\Omega-K$. Consequently $G\nu_1=G\nu_2$ G-p.p.p. in Ω .

Theorem 5. Let G satisfy the balayage principle and the continuity principle, and let \check{G} be regular. If G is non-degenerate, then it satisfies the BU-principle.

Proof. This is an immediate consequence of Theorem 3 and the above lemma.

Summarizing up the preceding results we have

Theorem 6. Assume that G satisfies the balayage principle and

⁹⁾ Cf. [1].

¹⁰⁾ Namely for any compact set K and its open neighborhood ω , there exists a \check{G} -regular compact set K' with $K \subset K' \subset \omega$.

¹¹⁾ G satisfies the balayage principle (cf. [3, 4]).

the continuity principle and that the adjoint kernel \check{G} is regular. Then, in order that G satisfies the U- and BU-principles, it is necessary and sufficient that G is non-degenerate.

§4. U-principle with respect to the adjoint kernel. Now we consider whether \check{G} satisfies the U-principle provided that G satisfies it. The answer to this problem is negative in general. In fact, let Ω be an open interval $\{|x|<1\}$ in the 1-dimensional Euclidean space and let G(x,y) be given by

$$G(x, y) = \sum_{n=0}^{\infty} x^{2n} y^n.$$

Then G satisfies the U-principle but \check{G} does not.

If G satisfies the balayage principle and other additional conditions, the answer is affirmative.

Theorem 7. Assume that G is regular and satisfies the balayage principle and the continuity principle, and that the adjoint kernel \check{G} is regular. Then \check{G} satisfies the U-principle if and only if G does it.

References

- [1] N. Bourbaki: Topologie générale, Chap. X. Paris (1949).
- [2] M. Kishi: Unicity principles in the potential theory, Osaka Math. J., 13, 41-74 (1961).
- [3] —: Note on balayage and maximum principles, Proc. Japan Acad., 39, 415-418 (1963).
- [4] —: Maximum principles in the potential theory, to appear.
- [5] —: Weak domination principle, to appear.

¹²⁾ \check{G} satisfies the continuity principle, since G satisfies the balayage principle (cf. [5]).