No. 10] 721

159. On Global Solutions for Mixed Problem of
a Semi-linear Differential Equation

By Reiko ARIMA and Yo0jirdo HASEGAWA
Kyoto University
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1. Introduction. Let us consider the equation:
’*u
(1.1) Ty ataw =f(u ) +g(u)
in the half space 2={(z, t); «, t>0}.

Such an equation was considered by J. Nagumo as a model of the
neuron.” Let us limit the behaviour of the function f and g in (1.1)
as follows:

Sy geC?, 9(0)=0, —K(u*+1)< f(w)< K,
|g(u) | < Ky(u?+|%|) and moreover

G(w)= f " 9(e)de < Kyu?

where K, K, K, K, are positive constants.
Now the initial and boundary data are given as follows with the
compatibility conditions
u(@, 0)=uyx)e BLN Dz, for x>0,

(1.2)

(1.8) U (%, 0)=uy(x)e BLN Dis, for >0,
l u(0, t)=(t)eC* for t>0,
(1.4) { %,(0)=1(0), u,(0)=+"(0)
) ¥"(0) —u1’(0) = f (¥(0))y¥'(0) + 9(4(0)).

Then we can prove the following:

THEOREM 1. There exists a unique solution wu(x,t) in 2 and
u(x, t), w,(z,t)e(BLNDie,) [0, T]. (Throughout this paper, we use
the following notation. Let E be a topological vector space. f(z,t),
or simply f(t) belongs to E[0, T], if f(x,t) is a continuous function
in te[0, T] with values in E. 3% is the topological vector space of
uniformly continuous and bounded functions in (0, ) together with
their derivatives of order up to k. If we consider square integrable
functions instead of uniformly continuous and bounded functions, we
have 9%:,.)

To prove this theorem, we should obtain a priori estimates of
solution and local existence theorem adapted to the step by step
continuation.

2. Local existence theorem. Let us consider the problem in
0<t<T, then there exists a function ¢(&, &, &;), positive and mnon-
inereasing 1n each argument, such that:
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Let t, be any point in the interval, then for initial data u, u, at
t=t, and boundary data r, there exists the solution in t,<t<t,+h,
where h=¢ ( sup |uy®)|, sup |u;(%)|, max [V'(t)]).

<2<t 0<z<+00 0<i<T

Let’s remark that

G(xy 87 t—f) _':E(x—E! t_f)_E(x_l‘S’ t—Z')
in the Green kernel of the heat equation in the half space, where

E(x, t)= ex < G )
T «/_ P\
The kernel has the following property;
Gla, & )20, [ Gla, & t)de<1.
0
In fact,

f G(e, g,t)ds<f E(z—g, t)de

[ akren(-52 e

ot
2/t
f exp {—&7) de'<1.

changing the variable & to &=

2
Let us put ¢,=0 without loss of generality. From (1.1), (1.8), we have
the following integro-differential equation:

.1 w(@, t)=d(x, t)+ f ‘de f "ds f Gz, &, c—s)
x{ P D26, 5)+otute o))
where
2.2) 3(, 1) =wu,(a)—2 f B, t—0)w(2)dr
+ftd7f°°G(wy é’ T)?/h(&')déy
which satisfies the equation P 0 _
ot otor

with the condition (1.3).
Put uy(, t)=9(x, t)

u, (%, t)=¢(x, t)+ftdrfrdsfmG(x, & t—s)

0,4
x{ e Pzt gu, ) a
(?’219 2, 3,-- ')'
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Then we have easily

i D] <19z, )]+ sup | £ )P4 ()
2 0ga<+eo 0s
0<s<e
and
P (0, 8)|<|-2 (o, )]+ sup | £ ) P8t tgu |-
ot ot gsaston 0s |
If we take

[ N—C
h= [____ 1, T:|
MO YN M

where C= sup —%—qﬁ(x, t)l, N is any number greater than C and

0<2< +o0
0T

M=max (| @), |g(w)|), then we have |u(a, )|, ]a’;%x, t)]sN<¢=o,1,2,

0
cor) in 0<a< 400, 0<t<h.

At first oe(BLND2)[0, T].

In fact

E.(a, t—1)<0, ng’ —Ew(x,t—r)drg—;— for all £>0, 2>0.

0
It follows de(PLNLL)[0, T].
The proof is similar for the derivatives of ¢, because, remarking
E,=FE,, we have

gx_ [th(xy t—)¥(r)dr= _637 OftE(x,t—T)¢(T)dT

= [ B, t—ov'@)ds,
and !

%‘!‘t Ex(w? t - T) '\I/‘(T) df — [t .Ex(x, t _ T) "PI(T) dT.

As easily seen, the sequence {u,} is convergent in %[0, h] with
the analogous discussions, the limit function u belongs to (%% Dz)
[0, 2] and satisfies all the required properties in Theorem 1.

3. A priori estimates. In the previous section, we obtained the
local existence theorem. In this section, we will show that |u(x,?)|

and l-aa%(x, t)l have a priort bounds in 0<t<T, where T is any posi-
tive number. This shows that we can choose the same number % in
0<t<T in the local existence theorem. It follows that there exists
the solution in 0<t<h at first, then we can find the solution in

0<t<2h and thus, step by step, we have the solution in 0<t<T. If
we assume |u(x,t)| has an ¢ priori bound, we have easily an a prior:

bound also for l%?:—(x, t)l, by using the equalities (2.1) and (2.2). So

we have only to show w(x, t) has an a priori bound.
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Let u(z, t) be a solution satisfying (1.1) and (1.3), and
u(z, t), u,(x, t)e Dz, [0, T].
Put v(z, t)=u(x, t)—¢(x, t), where ¢(x,t) is defined by (2.1), then
v, v,€ Die[0, T']
Viu—Veao = (V+8)(v,+8,)+9(v+9),
(@, 0)=wv,(x, 0)=0,
(0, t)=0.
Now, let us consider the energy form on wv(z, t);

Bt)= [ Lot+o+00—6+9) ds,

where C=1+44K,, then, taking the derivative with respect to t, we
have

E(®)= [ 00+ 000+ Cov,—g(v+ )0, + 9} da
= [ L0 S+ $)(0A 5+ 90+ 6)]
0,007 Cvv,—g(v+ (v, + )} da.

Remarking
f Va8 = — f vidw
0

0
and

(v,+¢z)vz=(v,+%¢5)z— ‘f ,

and by the assumption (1.2) for f and g, we have
E'(t)<C,E(®)+C, 0<t<T
where C,, C, are positive constants.
More pricisely they depend only on
r=max ¥(t), Tt)y=max (|$@®)], [¢'@), 6@l 119" @)]]22).*

Therefore E(t), 0<t<T, has an a priori bound. It follows, by using
Sobolev’s lemma, that v(t), therefore u(t) has an a priori bound.
Thus we have obtained
PROPOSITION. Under the assumption in Theorem 1,

|u(zx, t)| and \@—(w, t)l have a priori bounds in any finite inter-
val of t. ot

REMARK. We can consider the strictly analogous problem in the
three dimensional space of # and we have analogous results.
ay  Ta-Psu=rwlatow, a=l 4 24 2

ot? ot ot ox?  oOx: Oxi

in Q={(y, @5, 25, £); 0<t, 0<2, <+ 00, —o0 <Ly #3<+ o0} under the
condition (1.2).

* | (t)] stands for Sgplw(w. 1. 1le® ||z2 stands for ||¢(x,?)]]12R.
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The initial-boundary data are given as follows:

(1.3y {u:uo, %?—:ul (t=0)
U=y (2,=0)
U=, =1,

(L4 oz0)
Yu—Au = (Y)W +9()

where

Ue(Xqy gy X3), WLy, T, X5) € B[ Di2,; moreover,
ez Uin, € B (1=1, 2, 3)
V@, 3, 1) € (BLN D32)[0, T']
Vo, 23, ©) € (BN LALO, T'].
Then we have
THEOREM 2. There exists a unique solution u(x,t) in Q and
u(x’ t), u,(oc, t)G(Qiﬂ@i%)[O’ T],
W (3 8), Uy (8, ) B0, T,
The proof of the local existence theorem is almost analogous to
Theorem 1, and for a priori estimates, we need consider two energy
forms:
E@®= [ [7 [ £ 1o+ 202 4001 —Glo+9)| dusdanda,
2 T ¢
0 —00 —00

Eyt)= Of ) f / _;_[; v+ 20k, N,

—~—00 =00
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