22. Construction of Finite Commutative z-Semigroups

By Miyuki YAMADA

Department of Mathematics, Shimane University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1964)

§1. Introduction. As defined by Tamura [4], a semigroup is called a *z-semigroup* if it has a zero element, 0, but has no idempotent except 0. In particular, for a finite commutative semigroup S it is easily seen that S is a *z*-semigroup if and only if it satisfies the following two conditions:

(1) S has a zero element 0

and (2) $S \supset S^2 \supset \cdots \supset S^p = \{0\}$ for some positive integer $p^{(1)}$

If $S \setminus S^2$ is non-empty, every element of $S \setminus S^2$ is called a *prime* element of S.

In the case of p=1 or p=2, S satisfies the following

 $(3) S = \{0\}$

or (4) xy=0 for any $x, y \in S$, respectively.

Such a semigroup S is called a *trivial z-semigroup* or a null semigroup, corresponding to p=1 or p=2.

Now, the problem of construction of finite commutative z-semigroups occupies an important part in the problem of construction of finite commutative semigroups. In this paper, we shall deal with this problem and present a method of constructing all possible commutative z-semigroups of a given order. The proofs are omitted and will be given in detail elsewhere.²⁾

§ 2. Commutative z-semigroups of order n. At first, we have Theorem 1. For any positive integer n, there exists a commutative z-semigroup of order n.

Let G be a semigroup with a zero element 0. The subset A of G, where $A = \{x : x \in G, xy = yx = 0 \text{ for all } y \in G\}$, is a subsemigroup of G. We shall call A the annihilator of G.

Lemma 1. The annihilator of a non-trivial, finite commutative z-semigroup has a non-zero element (see also Tamura [3]).

Lemma 2. Let S be a commutative z-semigroup of order n+1 $(n \ge 1)$. Let 0 be the zero element of S and let u be a non-zero element contained in the annihilator of S. Then the set $\{0, u\}$ is both a null subsemigroup and an ideal of S, and the factor semigroup $D=S/\{0, u\}$ of S mod $\{0, u\}$ in the sense of Rees $\lceil 2 \rceil$ is a commutative z-semi-

¹⁾ $A \supset B$ means 'B is a proper subset of A'.

²⁾ This is an abstract of a paper which will appear elsewhere.

group of order n. Further, in this case S is a commutative extension of $\{0, u\}$ by D in the sense of Clifford [1].³⁾ Accordingly, S is a commutative extension of a null semigroup of order 2 by a commutative z-semigroup of order n.

Conversely, we have

Lemma 3. A commutative extension of a null semigroup of order 2 by a commutative z-semigroup of order n is a commutative z-semigroup of order n+1.

Remark. For any given null semigroup N of order 2 and for any commutative z-semigroup Z of order n, existence of a commutative extension of N by Z is proved by the following example: Let $N=\{0, u\}$, where 0 is the zero element of N. Let 0 be the zero element of Z, and put $S=Z\setminus 0+\{0, u\}$.

Then S becomes a commutative extension of N by Z by the multiplication \circ defined as follows:

 $x \circ y = \begin{cases} xy & \text{if } x, y \in Z \text{ and } xy \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

Combining Lemmas 2 and 3, we obtain the following

Theorem 2. A commutative z-semigroup of order n+1 $(n \ge 1)$ is a commutative extension of a null semigroup of order 2 by a commutative z-semigroup of order n, and vice-versa.

Now, we consider the problem:

(A) Construct all possible commutative z-semigroups of order n for a given positive integer n.

For n=1 or 2 this problem is easily solved, since a commutative *z*-semigroup of order 1 or 2 is a trivial *z*-semigroup or a null semigroup respectively.

Hence, the problem (A) is reduced to the following problem:

(B) We assume that we can construct all possible commutative z-semigroups of order $m \ (m \ge 2)$. Construct all possible commutative z-semigroups of order m+1.

Further, by Theorem 2 the problem (B) is reduced to the following problem:

If a binary operation \circ in M satisfies the following

(M) $\begin{cases} (1) & x \circ y \\ (2) & (x \circ y) \circ z = x \circ (y \circ z), \end{cases} \quad \text{for } x, y \in L \text{ and } xy \neq 0, \\ \in K & \text{otherwise,} \end{cases}$

then the resulting system $M(\bullet)$ becomes a semigroup, which is called an *extension* of K by L. If K and L are commutative, we can consider the case in which $M(\bullet)$ becomes a commutative semigroup. In this case, we shall call $M(\bullet)$ a commutative extension of K by L.

³⁾ Let K be a semigroup. Let L be a semigroup with a zero element 0, having no element in common with K. Let $M=K+L\setminus\{0\}$.

(C) Construct all possible commutative extensions of a given null semigroup of order 2 by a given commutative z-semigroup of order $m \ (m \ge 2)$.

We shall deal with this problem (C) in the next paragraph.

Remark. The whole discussion and result of this paragraph still hold, even if we substitute the terms 'z-semigroup' and 'extension' for the terms 'commutative z-semigroup' and 'commutative extension' respectively. Accordingly, the problem of constructing all finite z-semigroups is reduced to the following problem:

(C*) Construct all possible extensions of a given null semigroup of order 2 by a given z-semigroup of order m $(m \ge 2)$.

§ 3. C-factors of a finite commutative z-semigroup. Let N be a null semigroup of order 2, and put $N = \{0, z\}$, where 0 is the zero element of N. Let T be a finite commutative z-semigroup having 0 as its zero element. Let $T^* = T \setminus \{0\}$, and let $S = N + T^*$. Let Ω $= \{(x, y) : xy = 0, x, y \in T\}.$

Then, any subset Λ of Ω satisfying the following conditions (1)-(3) is an ideal of the direct product $T \times T$:

(E) $\begin{cases} (1) & (t, 0) \in \Lambda \text{ for any } t \in T, \\ (2) & (tv, w) \in \Lambda \text{ implies } (t, vw) \in \Lambda, \\ \text{and} & (3) & (v, w) \in \Lambda \text{ implies } (w, v) \in \Lambda. \end{cases}$

Such a Λ is called a *commutative extension factor* (abbrev., *C-factor*) of *T*. It is easy to see that Ω itself is the greatest *C*-factor of *T*.

Under this definition, we have

Theorem 3. Let Λ be a C-factor of T, and define multiplication \circ in S by the following

(P)
$$x \circ y = \begin{cases} xy & \text{if } x, y \in T^*, xy \neq \mathbf{0} \text{ or } \text{if } x, y \in N \\ 0 & \text{if } x \in N \text{ or } y \in N \\ 0 & \text{if } (x, y) \in \Lambda, x, y \in T^* \text{ and } xy = \mathbf{0} \\ z & \text{if } (x, y) \notin \Lambda, x, y \in T^* \text{ and } xy = \mathbf{0}. \end{cases}$$

Then, $S(\circ)$ becomes a commutative extension of N by T. Further, every commutative extension of N by T is found in this fashion.

By Theorem 3, the problem of determining all commutative extensions of N by T is reduced to the problem of finding all C-factors of T. Next, we shall consider this problem.

Theorem 4. Let

 $\Gamma = \{(t_1t_2, t_3) : t_1, t_2, t_3 \in T, t_1t_2t_3 = 0\} \cup \{(t_1, t_2t_3) : t_1, t_2, t_3 \in T, t_1t_2t_3 = 0\}.$ Then,

(1) Γ is a C-factor of T,

(2) $\Gamma = \Omega \setminus \{(x, y) : x, y \text{ are prime elements of } T\}$

and (3) if $\Omega \supseteq \Lambda \supseteq \Gamma$ and if Λ satisfies the condition (3) of (C), then Λ is a C-factor of T.

If a sequence $\mathfrak{S} = \{t, t_0, t_1, t_2, t_3, \dots, t_r\}$ of elements of T, where r

is an even integer ≥ 2 , satisfies

(1) $(t, t_0) \in \Omega$

and (2) $t=t_1t_2, t_0t_1=t_3t_4, t_2t_3=t_5t_6, \cdots, t_{r-4}t_{r-3}=t_{r-1}t_r$ $(t=t_1t_2 \text{ in the case of } r=2),$

then \mathfrak{S} is called a (t, t_0) -chain (in T). Further, in this case the ordered set (t_{r-2}, t_{r-1}, t_r) is called the *final part* of \mathfrak{S} . It should be noted that for a given $(t, t_0) \in \Omega$ such a (t, t_0) -chain is not necessarily unique even if it exists.

Lemma 4.

(1) If (t_0, t_1, t_2) is the final part of a (t, 0)-chain, $\{t, t_0, t_1, t_2\}$, then $(t_0t_1, t_2) = (0, t_2)$ and $(t_2, t_0t_1) = (t_2, 0)$.

(2) If (t_{r-2}, t_{r-1}, t_r) is the final part of a (t, 0)-chain and if $r \ge 4$, then (t_{r-2}, t_{r-1}, t_r) is also the final part of some (0, t')-chain.

Using this lemma, we have

Theorem 5. The least C-factor Λ_0 of T is as follows:

$$\begin{split} &\Lambda_0 = \{(v, \mathbf{0}) : v \in T\} \cup \{(\mathbf{0}, w) : w \in T\} \cup \{(t_{r-2}t_{r-1}, t_r) : (t_{r-2}, t_{r-1}, t_r) \text{ is the} \\ &\text{final part of a } (\mathbf{0}, t) \text{- or } (t, \mathbf{0}) \text{-chain for some } t \in T\} \cup \{(t_r, t_{r-2}t_{r-1}) : \\ &(t_{r-2}, t_{r-1}, t_r) \text{ is the final part of a } (\mathbf{0}, t) \text{- or } (t, \mathbf{0}) \text{-chain for some } t \in T\} \\ = \{(v, \mathbf{0}) : v \in T\} \cup \{(\mathbf{0}, w) : w \in T\} \cup \{(t_{r-2}t_{r-1}, t_r) : (t_{r-2}, t_{r-1}, t_r) \text{ is the final part of a } (\mathbf{0}, t) \text{-chain for some } t \in T\} \\ &\text{part of a } (\mathbf{0}, t) \text{-chain for some } t \in T\} \cup \{(t_r, t_{r-2}, t_{r-1}) : (t_{r-2}, t_{r-1}, t_r) \text{ is the final part of a } (\mathbf{0}, t) \text{-chain for some } t \in T\} \\ &\text{the final part of a } (\mathbf{0}, t) \text{-chain for some } t \in T\}. \end{split}$$

Further, we have the following

Theorem 6. Let Δ_0 be a C-factor of T and let (u, v) be an element of Ω . Then, the C-factor Δ of T generated by $\{\Delta_0, (u, v)\}$, that is, the least C-factor containing Δ_0 and (u, v) is as follows:

 $\Delta = \Delta_0 \bigcup \{(u, v)\} \bigcup \{(v, u)\} \bigcup \{(t_{r-2}t_{r-1}, t_r) : (t_{r-2}, t_{r-1}, t_r) \text{ is the final part of } a (u, v) - or (v, u) - chain \} \bigcup \{(t_r, t_{r-2}t_{r-1}) : (t_{r-2}, t_{r-1}, t_r) \text{ is the final part } of a (u, v) - or (v, u) - chain \}.$

For any C-factor Λ of T and for any subset Ξ of Ω , let $\Gamma(\Lambda, \Xi)$ be the least C-factor of T containing Λ and Ξ . Put $\{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_r\}$ $= \Xi$, where $\alpha_j \in \Omega$. Then, we can easily prove the following relation: $\Gamma(\Gamma(\dots \Gamma(\Gamma(\Lambda, \{\alpha_1\}), \{\alpha_2\}), \{\alpha_3\}), \dots, \{\alpha_{r-1}\}), \{\alpha_r\}) = \Gamma(\Lambda, \Xi).$

Now, by Theorems 5 and 6 we can obtain all *C*-factors of *T*. In fact: $\{\Gamma(\Lambda_0, \Sigma) : \Sigma \subset \Omega \setminus \Lambda_0\}$ is the totality of all *C*-factors of *T*.

Remark. In the case in which T is not necessarily commutative, we can also introduce the concept of *E*-factors of *T* as follows: A subset Π of Ω satisfying the condition

(1) $(t, 0) \in \Pi$ and $(0, t) \in \Pi$ for any $t \in T$

(E*) $\begin{cases} \text{and} (2) & (tv, w) \in \Pi \text{ implies } (t, vw) \in \Pi, \text{ and } (t, vw) \in \Pi \text{ implies} \\ & (tv, w) \in \Pi \end{cases}$

is called an extension factor (abbrev., *E*-factor) of *T*. It is clear that Ω itself is the greatest *E*-factor of *T*. Let $\Theta = \{(x, y) : x, y \in T\}$. Define multiplication \circ (\odot) in Θ as follows:

M. YAMADA

 $(x, y) \circ (v, w) = (xv, wy) \quad ((x, y) \odot (v, w) = (vx, yw)).$

Then, the resulting system $\Theta(\circ)$ ($\Theta(\odot)$) becomes a semigroup. It is clear that any *E*-factor of *T* is a left ideal of $\Theta(\circ)$ and a right ideal of $\Theta(\odot)$. Also, it is easily seen that both $\Theta(\circ)$ and $\Theta(\odot)$ coincide with $T \times T$ if *T* is commutative. Hence, if *T* is commutative any *E*-factor of *T* is an ideal of $T \times T$. Every *C*-factor of a finite commutative *z*-semigroup is an *E*-factor, but the converse is not true.

We have

Theorem. An E-factor Λ of a finite commutative z-semigroup is a C-factor if and only if it satisfies the condition (3) of (E).

Finally, we obtain the following extension theorem for the case in which T is not necessarily commutative:

Theorem. Let Λ be an E-factor of T, and define multiplication \circ in S by (P) of Theorem 3. Then, the resulting system $S(\circ)$ becomes an extension of N by T. Further, every extension of N by T is found in this fashion.

References

- [1] A. H. Clifford: Extensions of semigroups. Trans. Amer. Math. Soc., 68, 165-173 (1950).
- [2] D. Rees: On semigroups. Proc. Cambridge Phil. Soc., 36, 387-400 (1940).
- [3] T. Tamura: On finite one-idempotent semigroups (1). Jour. Gakugei Tokushima Univ., 4, 11-20 (1954).
- [4] —: Note on finite semigroups and determination of semigroups of order 4. Jour. Gakugei Tokushima Univ., 5, 17-27 (1954).