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22. Construction of Finite Commutative z.Semigroups

By Miyuki YAMADA
Department of Mathematics, Shimane University

(Comm. by Kinjir6 KUNUGI, M.ff.A., Feb. 12, 1964)

1. Introduction. As defined by Tamura 4, a semigroup is
called a z-semigroup if it has a zero element, 0, but has no idem-
potent except 0. In particular, for a finite commutative semigroup
S it is easily seen that S is a z-semigroup if and only if it satisfies
the following two conditions:

(1) S has a zero element 0
and (2) SS .S={0} for some positive integer p.

If S\S is non-empty, every element of S\S is called a prime
element of S.

In the case of p=l or p=2, S satisfies the following
(3) z={0}

or (4) xy=O for any x, yeS,
respectively.

Such a semigroup S is called a trivial z-semigroup or a null
semigroup, corresponding to p=l or p--2.

Now, the problem of construction of finite commutative z-semi-
groups occupies an important part in the problem of construction of
finite commutative semigroups. In this paper, we shall deal with
this problem and present a method of constructing all possible com-
mutative z-semigroups of a given order. The proofs are omitted
and will be given in detail elsewhere.)

2. Commutative z-semigroups of order n. At first, we have
Theorem 1. For any positive integer n, there exists a com-

mutative z-semigroup of order n.
Let G be a semigroup with a zero element 0. The subset A of

G, where A={x: xeG, xy=yx=O for all yeG}, is a subsemigroup of
G. We shall call A the annihilator of G.

Lemma 1. The annihilator of a non-trivial, finite commutative
z-semigroup has a non-zero element (see also Tamura [-_3).

Lemma 2. Let S be a commutative z-semigroup of order n+ 1
(n_l). Let 0 be the zero element of S and let u be a non-zero element
contained in the annihilator of S. Then the set {0, u} is both a null
subsemigroup and an ideal of S, and the factor semigroup D=S/{O, u}
of S rood [0, u} in the sense of Rees 2 is a commutative z-semi-

1) AB means ’B is a proper subset of A’.
2) This is an abstract of a paper which will appear elsewhere.
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group of order n. Further, in this case S is a commutative extension

of {0, u} by D in the sense of Clifford 1.) Accordingly, S is a

commutative extension of a null semigroup of order 2 by a com-
mutative z-semigroup of order n.

Conversely, we have
Lemma 3. A commutative extension of a null semigroup of

order 2 by a commutative z-semigroup of order n is a commutative
z-semigroup of order n+ 1.

Remark. For any given null semigroup N of order 2 and for
any commutative z-semigroup Z of order n, existence of a com-
mutative extension of N by Z is proved by the following example:
Let N=[0, u}, where 0 is the zero element of N. Let 0 be the
zero element of Z, and put S=Z\O+{O, u}.

Then S becomes a commutative extension of N by Z by the
multiplication defined as follows:

xy if x,yZ and xyO,
x y-

0 otherwise.
Combining Lemmas 2 and 3, we obtain the following
Theorem 2. A commutative z-semigroup of order n+l (n_l)

is a commutative extension of a null semigroup of order 2 by a
commutative z-semigroup of order n, and vice-versa.

Now, we consider the problem:
(A) Construct all possible commutative z-semigroups of order n

for a given positive integer n.
For n=l or 2 this problem is easily solved, since a commutative

z-semigroup of order 1 or 2 is a trivial z-semigroup or a null semigroup
respectively.

Hence, the problem (A) is reduced to the following problem:
(B) We assume that we can construct all possible commutative

z-semigroups of order m (m_2). Construct all possible commutative
z-semigroups of order m+l.

Further, by Theorem 2 the problem (B) is reduced to the following
problem:

3) Let K be a semigroup. Let L be a semigroup with a zero element 0, having
no element in common with K. Let M=K+L\{O}.

If a binary operation in M satisfies the following

=xy if x,yKor if x,yL and xyO,
(M) (1) xoy K otherwise,

(2) ( y) z= (y z),
then the resulting system M(o) becomes a semigroup, which is called an extension of K
by L. If K and L are commutative, we can consider the case in which M(o) becomes
a commutative semigroup. In this case, we shall call M(o) a commutative extension of
Kby L.
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(C) Construct all possible commutative extensions of a given
null semigroup of order 2 by a given commutative z-semigroup of
order m (m2).

We shall deal with this problem (C) in the next paragraph.
Remark. The whole discussion and result of this paragraph

still hold, even if we substitute the terms ’z-semigroup’ and ’ex-
tension’ for the terms ’commutative z-semigroup’ and ’commutative
extension’ respectively. Accordingly, the problem of constructing
all finite z-semigroups is reduced to the following problem"

(C*) Construct all possible extensions of a given null semigroup
of order 2 by a given z-semigroup of order m (m=>2).

3. C-factors of a finite commutative z-semigroup. Let N be
a null semigroup of order 2, and put N={0, z}, where 0 is the zero
element of N. Let T be a finite commutative z-semigroup having 0
as its zero element. Let T*--T\{O}, and let S--N+T*. Let /2

{(x, y)" xy--O, x, y T}.
Then, any subset A of /2 satisfying the following conditions (1)-

(3) is an ideal of the direct product T T"
(1) (, 0)A for any T,

(E) 2 ) (tv, w) A implies (, vw) A,
and (8) (v, w) eA implies (w, v) eA.

Such a A is called a commutative extension factor (abbrev., C-factor)
of T. It is easy to see that /2 itself is the greatest C-fatter of T.

Under this definition, we have
Theorem 8. Let A be a C-factor of T, and define multiplication

in S by the following

0
(P) y- 0

z

if x, yeT*, xy-O or if x, yeN
if xeN or yeN
if (x, y)eA, x, yeT* and xy=O

if (x, y)6A, x, yeT* and xy=O.
Then, S(o) becomes a commutative extension of N by T. Further,
every commutative extension of N by T is found in this fashion.

By Theorem 3, the problem of determining all commutative ex-
tensions of N by T is reduced to the problem of finding all C-factors
of T. Next, we shall consider this problem.

Theorem 4. Let
F--{(tt, t) t, t2, t e T, tt.t=O} [J [(t, t.t) t, t, t T, tt.t=O}.

Then,
(1) F is a C-factor of T,
(2) F=9\{(x, y) x, y are prime elements of T}

and (3) if 9A=[ and if A satisfies the condition (3) of (C), then
A is a C-factor of T.

If a sequence (R)=It, to, tt, t, t,-.., t} of elements of T, where r
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S an even integer =>2, satisfies
(t,

and 2 t=tt., tot-tt, tt-tt,. ., t_t_-t_t
(t-tt. in the case of r-2),

then (R) is called a (t, to)-chain (in T). Further, in this case the
ordered set (t_., t_, tr) is called the final part of (R). It should be
noted that for a given (t, t0)et2 such a (t, to)-chain is not necessarily
unique even if it exists.

Lemma 4.
1 If (to, t, t.) is the final part of a (t, O)-chain, It, to, t, t.},

then (tot, t.)-(O, t.) and (t., tot)-(t., 0).
2 If (t_, t_, t) is the final part of a (t, O)-chain and if

>=4, then (tr_. tr_, tr) iS also the final part of some (0, t’)-chain.
Using this lemma, we have
Theorem 5. The least C-factor Ao of T is as follows"

A0--{(v, 0)’veT}[.J{(0, w)’wT}[J{(t_t_, t) (t_., tr_, t) is the

final part of a (0, t)- or (t, O)-chain for some teT}[J{(t,t_.tr_)"
(t_., t_, t) is the final part of a (0, t)- or (t, O)-chain for some teT}
--{(v, 0)" veT}[_J[(0, w) wT}[(t_.t_, t) (t_., tr_, t) is the final
part of a (0, t)-chain for some te T}[J{(t, t_., tr_)" (t_., t_, t) is
the final part of a (0, t)-chain for some teT}.

Further, we have the following
Theorem 6. Let o be a C-factor of T and let (u, v) be an element

of 2. Then, the C-factor of T generated by {z/0, (u, v)], that is, the
least C-factor containing Zlo and (u, v) is as follows"
z/-/o[_J{(u, v)}(_J[(v, U)]J{(t_.tr_, tr) (t_., tr-, t) is the final part of
a (u, v)- or (v, u)-chain}[J[(t, t_t_)’(t,_., tr_, t) is the final part

of a (u, v)- or (v, u)-chain].
For any C-factor A of T and for any subset of 2, let F(A, )

be the least C-factor of T containing A and . Put {a, a., a,...,a}
--, where aeg. Then, we can easily prove the following relation"

;((...;’(;((A, {}), {.}), [}),..., {_}), {})--;’(, ).
Now, .by Theorems 5 and 6 we can obtain all C-factors of T. In
fact" IF(A0, X)’X/2\A0} is the totality of all C-factors of T.

Remark. In the case in which T is not necessarily commutative,
we can also introduce the concept of E-factors of T as follows" A
subset // of tO satisfying the condition

(1) (t, 0)// and (0, t)// for any tT
(E*) and 2 (tv, w)II implies (t, vw) II, and (t, vw) II implies

(tv, w) e II
is called an extension factor (abbrev., E-factor) of T. It is clear
that t2 itself is the greatest E-factor of T. Let 9--[(x, y)’x, yeT}.
Define multiplication () in 0 as follows"
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(x, y) (v, wu) ((x, y)v(v, w)=(vx,
Then, the resulting system (9() ({9()) becomes a semigroup. It is
clear that any E-factor of T is a left ideal of 0(o) and a right ideal
of 0(). Also, it is easily seen that both (o) and () coincide
with T T if T is commutative. Hence, if T is commutative any
E-factor of T is an ideal of T T. Every C-factor of a finite com-
mutative z-semigroup is an E-factor, but the converse is not true.

We have
Theorem. An E-factor A of a finite commutative z-semigroup

is a C-factor if and only if it satisfies the condition (3) of (E).
Finally, we obtain the following extension theorem for the case

in which T is not necessarily commutative"
Theorem. Let A be an E-factor of T, and define multiplication

in S by (P) of Theorem 3. Then, the resulting system S(o) becomes
an extension of N by T. Further, every extension of N by T is

found in this fashion.
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