17. On Adjoint Maps between Dual Systems

By Perla López DE CICILEO and Kiyoshi ISÉKI Universidad Nacional del Sur Bahía Blanca, Argentina (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1964)

Let E, F be linear spaces, α a bilinear form on $E \times F$. A pair of E, F is called a *dual system* on α if

1) $\alpha(x, y) = 0$ for all $x \in E$ implies y = 0,

2) $\alpha(x, y) = 0$ for all $y \in F$ implies x = 0.

Let E, F be a dual system on α , and let G, H be a dual system on β . If u is a linear map from E to G, then $\beta(u(x), y')$ is bilinear on $G \times H$, where $y' \in H$. Put $\alpha(x, u^*(y')) = \beta(u(x), y')$ for all $x \in E$ and $y' \in H$, if u^* is defined, it is a map from H to F. u^* is called the *algebraic adjoint* map of u. If B is of finite dimension, u^* is always well defined. In a Hilbert space with many inner products, we can define the adjoint on these inner products of a continuous linear map. The other example is the usual adjoint map. Let A be a subset of E (or F), the orthogonal part A^{\perp} is defined by the set $\{y \mid \alpha(x, y)=0$ for all $x \in A$ } (or $\{x \mid \alpha(x, y)=0 \text{ for all } y \in A$). Similarly we can also consider the orthogonal part for G, H, and β .

We shall consider a system in which the adjoint map is well defined.

Then we have the following fundamental

Proposition 1. For a linear subspace A of E, $u^{*-1}(A^{\perp}) = (u(A))^{\perp}$. Proposition 2. For a linear subspace B of G, $(u^{-1}(B))^{\perp} = u^*(B^{\perp})$.

Proof of Proposition 1. Let $y' \in u^{*-1}(A^{\perp})$, then for all $x \in A$, $0 = \alpha(x, u^*(y')) = \beta(u(x), y')$ and so $y' \in u(A)^{\perp}$. Conversely if $y' \in (u(A))^{\perp}$, then $0 = \beta(u(x), y') = \alpha(x, u^*(y'))$ for all $x \in A$. Hence $u^*(y') \subset A^{\perp}$, and $y' \in u^{*-1}(A^{\perp})$.

Proof of Proposition 2. Let $y \in u^*(B^{\perp})$, there is an element $y' \in B^{\perp}$ such that u(y') = y. For any $x \in u^{-1}(B)$, we have $\alpha(x, y) = \alpha(x, u^*(y'))$ $= \beta(u(x), y') = 0$. Hence $y \in (u^{-1}(B))^{\perp}$.

To prove the converse, we shall consider some linear subspaces. From $u^{-1}(B) \supset \ker(u)$, there is the linear subspace E_1 such that $u^{-1}(B) = \ker(u) \oplus E_1$. Hence $B \subset u(E_1)$. Further there is the linear subspace E_2 such that $E = \ker(u) \oplus E_1 \oplus E_2$. Let \tilde{u} be the restriction of u on $E_1 \oplus E_2$, then u gives an isomorphism from $E_1 \oplus E_2$ to $\operatorname{Im}(u)$. If $G_1 = \tilde{u}(E_1)$, $G_2 = \tilde{u}(E_2)$, then $B \subset G_1$. Let p be the projection from G to G_1 . For $y \in (u^{-1}(B))^{\perp}$, we define y' by $\beta(x', y') = \alpha(\tilde{u}^{-1}(p(x')), y)$ for $x' \in G$. If $x' \in G_1 \oplus G_2$, then $\beta(x', y') = \alpha(\tilde{u}^{-1}(x'), y)$. Hence $\alpha(x, y) = \beta(u(x), y')$ $= \alpha(x, u^*(y'))$ for all $x \in E$. Therefore we have $y = u^*(y')$. Then for $x' \in G$,

$$\begin{split} \beta(x', y') &= \alpha(\tilde{u}^{-1}(p(x')), \ u^*(y')) \\ &= \beta(u(\tilde{u}^{-1}(p(x'))), \ y') = \beta(p(x'), \ y'). \\ \text{This shows } \beta(x'_3, \ y') &= 0 \quad \text{for } x'_3 \in G_3. \quad \text{For each } x' \in B, \text{ we have } \\ x' &= x'_1 + x'_3, \ x'_1 \in G_1, \ x'_3 \in G_2. \quad \text{Let } u(x_1) &= x'_1, \text{ then } \\ 0 &= \alpha(x_1, \ y) &= \alpha(x_1, \ u^*(y')) \\ &= \beta(u(x), \ y') &= \beta(x'_1, \ y'). \end{split}$$

Therefore we have

 $\begin{array}{l} \beta(x',\,y') \!=\! \beta(x'_1\!+\!x'_3,\,y') \!=\! \beta(x'_1,\,y') \!+\! \beta(x'_3,\,y') \!=\! 0. \\ \text{This shows } y \!=\! u^*(y'), \; y' \!\in\! B^{\perp}, \; \text{which is equivalent to } y \!\in\! u^*(B^{\perp}). \\ \text{COROLLARY. } & \text{Ker}(u^*) \!=\! (\text{Im}(u))^{\perp}, \; \text{Im}(u^*) \!=\! (\text{Ker}(u))^{\perp}. \end{array}$

Proposition 3. Im(u)=G if and only if u^{*-1} exists.

Proof. By Corollary $\operatorname{Ker}(u^*) = (\operatorname{Im}(u))^{\perp} = (0)$ if and only if $\operatorname{Im}(u) = G$. This is equivalent to the existence of the inverse of u^* .

Proposition 4. $Im(u^*) = F$ if and only if u^{-1} exists.

Proof. u^{-1} exists, if and only if Ker(u)=0. Hence by Corollary, this means $\text{Im}(u^*)=F$.

If Ker(u) is of finite dimension, u is called an α -map, on the other hand, if Im(u) is of finite co-dimension, u is called a β -map. (See A. Deprit [1].) Then, by Corollary,

Proposition 5. Let u be a linear map from E to F. u is an α -map (or β -map) if and only if u^* is a β -map (or an α -map).

In this case, we have $\dim(\ker(u)) = \operatorname{cod}(\operatorname{Im}(u^*))$ or $\operatorname{cod}(\operatorname{Im}(u)) = \dim(\ker(u^*))$.

Reference

 A. Deprit: Contribution à l'étude de l'Algèbre des applications linéaires continues d'un espace localement convexe séparé. Acad. Roy. Belgique, Cl. Sci. Mém. Coll., 8(31), 1-170 (1959).