14. On the Quasi-Hausdorff Means whose Weight Function has Jumps

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1964)

1. The quasi-Hausdorff transformation (H^*, ψ) is defined by means of the equation

$$h_n^* = \sum_{\nu=n}^{\infty} {\binom{\nu}{n}} s_{\nu} \int_0^1 r^{n+1} (1-r)^{\nu-n} d\psi(r),$$

where the weight function $\psi(r)$ is of bounded variation in the interval $0 \le r \le 1$. This transformation is regular if and only if

$$\psi(1) - \psi(+0) = 1.$$

We may assume that

 $\psi(1)=1, \quad \psi(+0)=0.$

For the definition and the properties of this method, see, e.g., G. H. Hardy [1], B. Kuttner [3-6] and M. S. Ramanujan [9-11].

In a recent paper K. Ishiguro and B. Kuttner [2] proved the following

Theorem 1. For the regular quasi-Hausdorff means of the Fourier series

$$\sum_{n=1}^{\infty} \frac{\sin nt}{n} , \qquad (1)$$

we have

$$\lim_{n\to\infty}h_n^*(t_n)=\int_0^1d\psi(r)\int_0^{\tau}\frac{\sin y/r}{y}dy,$$

provided that the weight function $\psi(r)$ is continuous at r=0, $nt_n \rightarrow \tau$ and $nt_n^2 \rightarrow 0$.

This theorem corresponds to the following one of O. Szász [12]. Theorem 2. For the regular Hausdorff means of (1) we have

$$\lim_{n\to\infty}h_n(t_n)=\int_0^1d\psi(r)\int_0^r\frac{\sin ry}{y}dy$$

as $nt_n \rightarrow \tau$.

Here the Hausdorff transformation (H, ψ) is defined by means of the equation

$$h_{n} = \sum_{\nu=0}^{n} \binom{n}{\nu} s_{\nu} \int_{0}^{1} r^{\nu} (1-r)^{n-\nu} d\psi(r),$$

where the weight function $\psi(r)$ is of bounded variation in the interval $0 \le r \le 1$. This transformation is regular if, and only if,

K. ISHIGURO

$$\psi(1) - \psi(0) = 1$$

and $\psi(r)$ is continuous at the origin. See, e.g., G. H. Hardy [1].

A. E. Livingston [7] and D. Newman [8] have recently studied the Gibbs phenomenon for this method of summability in the case where the weight function has jumps.

We shall prove, in this note, the following

Theorem 3. If $\psi(r)$ is a step-function which is continuous at r=0, then the regular quasi-Hausdorff means (H^*, ψ) of (1) exhibit the Gibbs phenomenon.

Proof. For the proof we use the method of D. Newman [8]. By Theorem 1, it is sufficient to prove that

$$\int_{0}^{1} d\psi(r) \int_{0}^{\pi/r} rac{\sin y}{y} dy > rac{\pi}{2}$$

for some τ with $0 < \tau < \infty$. Since

$$\int_0^1 d\psi(r) \int_0^\infty \frac{\sin y}{y} dy = \frac{\pi}{2},$$

it is sufficient to prove that

$$F(\tau) = \int_{0}^{1} d\psi(r) \int_{\tau/r}^{\infty} \frac{\sin y}{y} \, dy < 0$$

for some τ . This will be accomplished by showing that

(a) $\int_{1}^{v} F(\tau) d\tau$ remains bounded as $v \to \infty$,

(b)
$$F(\tau) \notin L^1(1, \infty)$$
.

We see easily, by partial integrations,

$$\int_{\tau/r}^{\infty} \frac{\sin y}{y} \, dy = \frac{r}{\tau} \cos \frac{\tau}{r} + O\left[\left(\frac{r}{\tau}\right)^2\right].$$

Hence

$$F(\tau) = \int_{0}^{1} \left\{ \frac{r}{\tau} \cos \frac{\tau}{r} + O\left[\left(\frac{r}{\tau} \right)^{2} \right] \right\} d\psi(r)$$
$$= \frac{1}{\tau} \int_{0}^{1} r \cos \frac{\tau}{r} d\psi(r) + O\left(\frac{1}{\tau^{2}} \right), \qquad (2)$$

since

$$\int_{0}^{1} r^{2} |d\psi(r)| \leq \int_{0}^{1} |d\psi(r)| = O(1).$$

Now we shall prove (a). From (2), we have

$$\int_{1}^{v} F(\tau) d\tau = \int_{1}^{v} \frac{d\tau}{\tau} \int_{0}^{1} r \cos \frac{\tau}{r} d\psi(r) + O(1)$$
$$= \int_{0}^{1} r d\psi(r) \int_{1/r}^{v/r} \frac{\cos \tau}{\tau} d\tau + O(1), \text{ as } v \to \infty,$$

where the inversion of the order of integrations is legitimate.

Here we have, for all Y,

No. 2] On the Quasi-Hausdorff Means whose Weight Function has Jumps

$$\int_{1}^{r} \frac{\cos \tau}{\tau} d\tau \Big| \leq M, \text{ say.}$$

Hence

$$\left|\int_{1}^{v}F(\tau)d au
ight|{\leq}2M\!\int_{0}^{1}\!\left|d\psi(r)
ight|{+}O(1){=}O(1)$$
 as $v{\,
ightarrow}\infty.$

Next we shall prove (b). From the assumption, we have $\psi(r) = \sum_{\xi_k \leq r} \{\psi(\xi_k + 0) - \psi(\xi_k - 0)\},\$

where ξ_k ($\neq 0$) is the k-th discontinuity (jump) of $\psi(r)$ and the summation extends over all such (possibly countably infinite) values. From (2), we have

$$egin{aligned} F(au) &= rac{1}{ au} \sum_k \xi_k \{ \psi(\xi_k + 0) - \psi(\xi_k - 0) \} \cos rac{ au}{\xi_k} + Oigg(rac{1}{ au^2}igg) \ &= rac{1}{ au} V(au) + Oigg(rac{1}{ au^2}igg), \, \, ext{say}, \end{aligned}$$

where $V(\tau)$ is a almost periodic function. Hence

$$\frac{1}{T}\int_0^T |V(\tau)|\,d\tau \to M > 0$$

as $T \to \infty$, since $|V(\tau)|$ is not identically equal to zero. It follows that, on integration by part,

$$\int_{1}^{T} \frac{|V(\tau)|}{\tau} d\tau \to M \cdot \log T$$

as $T \rightarrow \infty$, which proves (b).

2. Generally, a weight function $\psi(r)$ may be written as $\psi(r) = h(r) + j(r)$, where h(r) is continuous and

$$j(r) = \sum_{\xi_k \leq r} \{ \psi(\xi_k + 0) - \psi(\xi_k - 0) \}$$

Then Theorem 3 may be generalized as follows:

Theorem 4. If $\psi(r)$ is a weight function which has at least one jump and is continuous at r=0, and if its continuous part h(r) satisfies

$$\int_{1}^{\infty} \frac{h\left(\frac{1}{u}\right) - h(1)\frac{1}{u}}{u} \cdot \sin xu \, du \in L^{1}(1, \infty), \tag{3}$$

then the regular quasi-Hausdorff means (H^*, ψ) of (1) exhibit the Gibbs phenomenon.

Proof. Using the same argument as in the proof of Theorem 3, we see that

(a)
$$\int_{1}^{v} F(\tau) d\tau$$
 remains bounded as $v \to \infty$,

where

$$F(\tau) = \int_{0}^{1} d\psi(r) \int_{\tau/r}^{\infty} \frac{\sin y}{y} \, dy$$

K. Ishiguro

as before. Again, from (2),

$$F(\tau) = \frac{1}{\tau} \int_0^1 r \cos\frac{\tau}{r} dh(r) + \frac{1}{\tau} \int_0^1 r \cos\frac{\tau}{r} dj(r) + O\left(\frac{1}{\tau^2}\right)$$
$$= \frac{1}{\tau} \left\{ U(\tau) + V(\tau) \right\} + O\left(\frac{1}{\tau^2}\right),$$

say. As in the proof of Theorem 3 we see

$$\int_{1}^{T} \frac{|V(\tau)|}{\tau} d\tau \to M \cdot \log T, \text{ with } M > 0,$$

as $T \to \infty$. Now put $h(r) = \alpha r$ with an arbitrary constant α . Then $U(\tau) = \alpha \int_{0}^{1} r \cos \frac{\tau}{r} dr$ $= \alpha \tau^{2} \int_{0}^{\infty} \frac{\cos u}{u^{3}} du.$

From the second mean value theorem of integration, we get the estimation

$$U(\tau) = O\left(\frac{1}{\tau}\right)$$

as $\tau \rightarrow \infty$. Hence

$$\int_{1}^{T} \frac{|U(\tau)|}{\tau} d\tau = O(1)$$

as $T \rightarrow \infty$.

Now we put

$$U(\tau) = \int_{0}^{1} r \cos \frac{\tau}{r} dh(r)$$

= $\int_{0}^{1} r \cos \frac{\tau}{r} d\{h(r) - h(1)r\} +$
+ $h(1) \int_{0}^{1} r \cos \frac{\tau}{r} dr = U_{1}(\tau) + U_{2}(\tau),$

where

$$\int_{1}^{T} \frac{|U_2(\tau)|}{\tau} d\tau = O(1).$$

Thus, to prove the theorem, it is sufficient to show

$$\int_{1}^{T} \frac{|U_{1}(\tau)|}{\tau} d\tau = O(1).$$

Here

$$\begin{split} U_{1}(\tau) &= \int_{0}^{1} r \cos \frac{\tau}{r} dh^{*}(r) \\ &= -\int_{0}^{1} \left(\cos \frac{\tau}{r} + \frac{\tau}{r} \sin \frac{\tau}{r} \right) h^{*}(r) dr \\ &= -\int_{0}^{1} \cos \frac{\tau}{r} \cdot h^{*}(r) dr - \int_{0}^{1} \frac{\tau}{r} \sin \frac{\tau}{r} \cdot h^{*}(r) dr \\ &= -W_{1}(\tau) - W_{2}(\tau), \end{split}$$

[Vol. 40,

say, where $h^{*}(r) = h(r) - h(1)r$.

Since $h^*(r)$ is of bounded variation in the interval $0 \le r \le 1$, it may be represented by $h_1^*(r) - h_2^*(r)$, where the functions $h_1^*(r)$ and $h_2^*(r)$ are non-decreasing and equal to zero at the origin. Further, we get

$$\int_{0}^{1} \cos \frac{\tau}{r} \cdot h_{1}^{*}(r) dr = \tau \int_{\tau}^{\infty} \cos u \cdot h_{1}^{*}\left(\frac{\tau}{u}\right) \frac{du}{u^{2}} = O\left(\frac{1}{\tau}\right)$$
Hence
$$\int_{0}^{\tau} \frac{|W_{1}(\tau)|}{u^{2}} d\tau = O(1)$$

as $\tau \to \infty$.

$$\int_{1}^{T} \frac{|W_{1}(\tau)|}{\tau} d\tau = O(1)$$

as $T \rightarrow \infty$.

Next

$$W_{2}(\tau) = \int_{0}^{1} \frac{\tau}{r} \sin \frac{\tau}{r} \cdot h^{*}(r) dr$$
$$= \tau \int_{1}^{\infty} \frac{h^{*}\left(\frac{1}{u}\right)}{u} \sin \tau u du.$$

From the assumption (3) of the theorem, we get

$$\int_{1}^{T} \frac{|W_{2}(\tau)|}{\tau} d\tau = O(1).$$

Collecting the above estimations we see (b) $F(\tau) \notin L^1(1, \infty),$ whence the proof is completed.

Remark. If we put

$$f(u) = \begin{cases} \frac{h\left(\frac{1}{u}\right) - h(1)\frac{1}{u}}{u} & \text{for } 1 \le u < \infty \\ 0 & \text{for } -\infty < u < 1, \end{cases}$$

then the condition (3) becomes

$$\int_{-\infty}^{\infty} f(u) \sin xu \, du \in L^1(1, \infty).$$

By using the theorems of Fourier integrals, some further sufficient conditions on h(r) may be obtained.

References

- [1] G. H. Hardy: Divergent Series. Oxford (1949).
- [2] K. Ishiguro and B. Kuttner: On the Gibbs phenomenon for quasi-Hausdorff means. Proc. Japan Acad., 39, 731-735 (1963).
- [3] B. Kuttner: Some remarks on quasi-Hausdorff transformations. Quart. J. Math. (Oxford) (2), 8, 272–278 (1957).
- [4] ----: Note on a paper by M. S. Ramanujan on quasi-Hausdorff transformations. J. Indian Math. Soc., (New Ser.) 21, 97-104 (1957).
- [5] —: On a certain quasi-Hausdorff transformation. J. London Math. Soc., 34, 401-405 (1959).

K. ISHIGURO

- [6] B. Kuttner: On "quasi-Cesàro" summability. J. Indian Math. Soc., (New Ser.) 24, 319-341 (1960).
- [7] A. E. Livingston: Some Hausdorff means which exhibit Gibbs phenomenon. Pacific J. Math., 3, 407-415 (1953).
- [8] D. Newman: The Gibbs phenomenon for Hausdorff means. Ibid., **12**, 367-370 (1962).
- [9] M. S. Ramanujan: Series-to-series quasi-Hausdorff transformations. J. Indian Math. Soc., (New Ser.) 17, 47-53 (1953).
- [10] —: On Hausdorff and quasi-Hausdorff methods of summability. Quart. J. Math. (Oxford) (2), 8, 197-213 (1957).
- [11] —: A note on the quasi-Hausdorff series-to-series transformation. J. London Math. Soc., 32, 27-32 (1957).
- [12] O. Szász: Gibbs' phenomenon for Hausdorff means. Trans. Amer. Math. Soc., 69, 440-456 (1950).