## 34. A Characterization of Finite Projective Linear Groups

By Tosiro Tsuzuku<br>Mathematical Institute, Nagoya University<br>(Comm. by Kenjiro Shoda, m.J.A., March 12, 1964)

We say that a group $G$ admits a Bruhat decomposition if it satisfies the following conditions (1) through (11). ${ }^{1)}$
(1) $G$ has three subgroups $U, H$, and $W$.
(2) $H$ normalizes $U$.
(3) $H$ is a normal subgroup of $W$.
(4) $W / H=\mathfrak{M}$ is a finite group.
(5) For each $w \in \mathfrak{M}, U$ has subgroups $U_{w}^{\prime}$ and $U_{w}^{\prime \prime}$ such that $U=U_{w}^{\prime} U_{w}^{\prime \prime}$. For each $w \in \mathfrak{B}$, choose a representative $\omega(w)$ in $W$.
(6) $\omega(w)^{-1} U_{w}^{\prime} \omega(w) \subset U$.
(7) $G=\sum_{w \in \mathscr{P}} H U \omega(w) U_{w}^{\prime \prime}$, and in the representation $g=h u \omega(w) u^{\prime \prime}$ with $h \in H, u \in U, w \in \mathfrak{W}$ and $u^{\prime \prime} \in U_{w}^{\prime \prime}$, each factor is unique.
(8) There is a distinguished set $\mathfrak{F}$ of elements of $\mathfrak{W}$ of period 2 which generates $\mathfrak{M}$.
(9) For $w \in \mathfrak{F}$ and $s \in \mathfrak{B}, U_{w}^{\prime \prime} \subseteq U_{s}^{\prime}$ implies $U_{w}^{\prime \prime} \subseteq U_{s w}^{\prime}$.
(10) For $w \in \mathfrak{F}, H U+H U \omega(w) U_{w}^{\prime \prime}$ is a subgroup of $G$.
(11) There is an $x \in U$ such that $x \in U_{w}^{\prime}$ implies $w=1$.

The group $\mathfrak{F}$ is called Weyl group associated to this Bruhat decomposition and the set $\mathfrak{F}$ is called the canonical set of generators of $\mathfrak{M}$.

It is well known that the projective special linear group $P S L$ $(n, q)$, operating on the Desarguesian projective space of dimension $n-1$ over Galois field $G F(q)$, admits a Bruhat decomposition with the symmetric group $S_{n}$ of degree $n$ as Weyl group and with the set $\mathscr{F}=\{(1,2),(2,3), \cdots,(n-1, n)\}$ as the canonical set of generators of $\mathfrak{F}$, where elements of $S_{n}$ operate on $n$ letters $1,2, \cdots, n$.

Recently D. G. Higman and J. E. Maclaughlin proved in [2] that a finite group $G$ admitting a Bruhat decomposition with the symmetric group of degree 3 as Weyl group has a representation $\theta$ on a finite Desarquesian projective plane such that $\theta(G)$ contains the group $\operatorname{PSL}(3, q)$. As a generalization of this theorem, we prove the following

Theorem. Let a finite group $G$ admit a Bruhat decomposition with the symmetric group $S_{n}$ of degree $n \geqq 4$ as Weyl group $\mathfrak{M}$ and with the canonical set $\mathfrak{F}=\{(1,2), \cdots,(n-1, n)\}$ of generators of $\mathfrak{M}$ where elements of $S_{n}$ operate on $n$ letters $1, \cdots, n$. Then $G$ has a representation $\theta$ on a finite projective space such that $\theta(G)$ contains

1) See R. Steinberg [4].
the group $P S L(n, q)$ or the alternating group $A_{7}$ of degree 7. Hence, if $G$ is simple, it is isomorphic with $\operatorname{PSL}(n, q)$ or $A_{7}$.

We want here to sketch our proof of the theorem. A complete proof will be given elsewhere.

Let $G^{(r)}=\sum_{w \in S_{r} \times S_{n-r}} H U_{\omega}(w) U$ for $r=1, \cdots, n-1$, where $S_{r}$ is the symmetric group on $r$ letters $1, \cdots, r$ and $S_{n-1}$ is the symmetric group on $n-r$ letters $r+1, \cdots, n$. Let $\mathfrak{S}$ be the set consisting of all cosets $G$ by $G^{(r)}, r=1, \cdots, n-1$. If $G^{(r)} a$ and $G^{(s)} b$ are two elements of $\mathbb{S}$, if $r \geqq s$ and $G^{(r)} a \frown G^{(s)} b \neq \phi$, we say that $G^{(r)} a$ contains $G^{(s)} b$ and we denote by $G^{(r)} a \geqq G^{(s)} b$. Then we can prove that $\mathbb{S}$ is a semi-ordered set, and indeed, a lattice, and the subset $\mathfrak{P}$ of $\subseteq$ consisting of all cosets of $G$ by $G^{(1)}$ and $G^{(2)}$ is a projective space in the sense of 0 . Veblen and J. W. Young, where each coset $G$ by $G^{(1)}$ is a point and each coset of $G$ by $G^{(2)}$ is a line. ${ }^{2)}$ Moreover we can prove that there exists a one to one correspondence between the set consisting of all $r$-dimensional subspaces of $\Re$ and the set consisting of all cosets of $G$ by $G^{(r+1)}$, and, by this correspondence, the lattice $\mathfrak{S}^{\prime}$ consisting of all subspaces of $\mathfrak{X}$ is lattice isomorphic to the lattice S. If we define operation of elements of $G$ on $\mathfrak{S}$ by $\left(G^{(r)} a\right)^{x}=G(a x)$ where $G^{(r)} a \in \mathbb{S}$ and $x \in G$, then we can prove that $G$ is flag transitive on $\mathbb{S}$ in the sense of D. G. Higman. ${ }^{3)}$ Hence, by the theorem of D. G. Higman, our theorem is proved. ${ }^{4)}$

## References

[1] R. Baer: Linear Algebra and Projective Geometry. New York (1952).
[2] D. G. Higman and J. E. Mclaughlin: Geometric $A B A$-groups. Illinois Jour. of Math., 5, 382-397 (1961).
[3] D. G. Higman: Flag-transitive collineation groups of finite projective spaces. Illinois Jour. of Math., 6, 434-446 (1962).
[4] R. Steinberg: Prime power representations of finite linear groups II. Canadian Jour. of Math., 9, 347-351 (1957).
[5] O. Veblen and J. W. Young: Projective Geometry I, II. Boston (1909).

[^0]
[^0]:    2) See O. Veblen and J. W. Young [5].
    3) See D. G. Higman [3].
    4) See D. G. Higman [3] and R. Baer [1], Chapter VII.
