34. A Characterization of Finite Projective Linear Groups

By Tosiro TSUZUKU

Mathematical Institute, Nagoya University (Comm. by Kenjiro SHODA, M.J.A., March 12, 1964)

We say that a group G admits a Bruhat decomposition if it satisfies the following conditions (1) through (11).¹⁾

(1) G has three subgroups U, H, and W.

(2) H normalizes U.

(3) H is a normal subgroup of W.

(4) $W/H=\mathfrak{B}$ is a finite group.

(5) For each $w \in \mathfrak{W}$, U has subgroups U'_w and U''_w such that $U = U'_w U''_w$. For each $w \in \mathfrak{W}$, choose a representative $\omega(w)$ in W.

 $(6) \quad \omega(w)^{-1}U'_{w}\omega(w) \subset U.$

(7) $G = \sum_{w \in \mathfrak{W}} HU_{\omega}(w)U''_{w}$, and in the representation $g = hu_{\omega}(w)u''$ with $h \in H$, $u \in U$, $w \in \mathfrak{W}$ and $u'' \in U''_{w}$, each factor is unique.

(8) There is a distinguished set \mathfrak{F} of elements of \mathfrak{W} of period 2 which generates \mathfrak{W} .

(9) For $w \in \mathfrak{F}$ and $s \in \mathfrak{B}$, $U''_w \subseteq U'_s$ implies $U''_w \subseteq U'_{sw}$.

(10) For $w \in \mathfrak{F}$, $HU + HU\omega(w)U''_w$ is a subgroup of G.

(11) There is an $x \in U$ such that $x \in U'_w$ implies w=1.

The group \mathfrak{W} is called Weyl group associated to this Bruhat decomposition and the set \mathfrak{F} is called the canonical set of generators of \mathfrak{W} .

It is well known that the projective special linear group PSL(n,q), operating on the Desarguesian projective space of dimension n-1 over Galois field GF(q), admits a Bruhat decomposition with the symmetric group S_n of degree n as Weyl group and with the set $\mathfrak{F} = \{(1, 2), (2, 3), \dots, (n-1, n)\}$ as the canonical set of generators of \mathfrak{B} , where elements of S_n operate on n letters $1, 2, \dots, n$.

Recently D. G. Higman and J. E. Maclaughlin proved in [2] that a finite group G admitting a Bruhat decomposition with the symmetric group of degree 3 as Weyl group has a representation θ on a finite Desarquesian projective plane such that $\theta(G)$ contains the group PSL(3, q). As a generalization of this theorem, we prove the following

Theorem. Let a finite group G admit a Bruhat decomposition with the symmetric group S_n of degree $n \ge 4$ as Weyl group \mathfrak{B} and with the canonical set $\mathfrak{F} = \{(1, 2), \dots, (n-1, n)\}$ of generators of \mathfrak{B} where elements of S_n operate on n letters $1, \dots, n$. Then G has a representation θ on a finite projective space such that $\theta(G)$ contains

¹⁾ See R. Steinberg [4].

the group PSL(n, q) or the alternating group A_7 of degree 7. Hence, if G is simple, it is isomorphic with PSL(n, q) or A_7 .

We want here to sketch our proof of the theorem. A complete proof will be given elsewhere.

Let $G^{(r)} = \sum_{w \in S_r \times S_{n-r}} HU\omega(w)U$ for $r=1, \dots, n-1$, where S_r is the symmetric group on r letters $1, \dots, r$ and S_{n-1} is the symmetric group on n-r letters $r+1, \dots, n$. Let \mathfrak{S} be the set consisting of all cosets G by $G^{(r)}$, $r=1, \dots, n-1$. If $G^{(r)}a$ and $G^{(s)}b$ are two elements of \mathfrak{S} , if $r \geq s$ and $G^{(r)}a \frown G^{(s)}b \neq \phi$, we say that $G^{(r)}a$ contains $G^{(s)}b$ and we denote by $G^{(r)}a \ge G^{(s)}b$. Then we can prove that \mathfrak{S} is a semi-ordered set, and indeed, a lattice, and the subset \mathfrak{P} of \mathfrak{S} consisting of all cosets of G by $G^{(1)}$ and $G^{(2)}$ is a projective space in the sense of O. Veblen and J. W. Young, where each coset G by $G^{(1)}$ is a point and each coset of G by $G^{(2)}$ is a line.²⁾ Moreover we can prove that there exists a one to one correspondence between the set consisting of all r-dimensional subspaces of \mathfrak{P} and the set consisting of all cosets of G by $G^{(r+1)}$, and, by this correspondence, the lattice \mathfrak{S}' consisting of all subspaces of \mathfrak{P} is lattice isomorphic to the lattice \mathfrak{S} . If we define operation of elements of G on \mathfrak{S} by $(G^{(r)}a)^x = G(ax)$ where $G^{(r)}a \in \mathfrak{S}$ and $x \in G$, then we can prove that G is flag transitive on \mathfrak{S} in the sense of D. G. Higman.³⁾ Hence, by the theorem of D. G. Higman, our theorem is proved.⁴⁾

References

- [1] R. Baer: Linear Algebra and Projective Geometry. New York (1952).
- [2] D. G. Higman and J. E. Mclaughlin: Geometric ABA-groups. Illinois Jour. of Math., 5, 382-397 (1961).
- [3] D. G. Higman: Flag-transitive collineation groups of finite projective spaces. Illinois Jour. of Math., 6, 434-446 (1962).
- [4] R. Steinberg: Prime power representations of finite linear groups II. Canadian Jour. of Math., 9, 347-351 (1957).
- [5] O. Veblen and J. W. Young: Projective Geometry I, II. Boston (1909).

²⁾ See O. Veblen and J. W. Young [5].

³⁾ See D. G. Higman [3].

⁴⁾ See D. G. Higman [3] and R. Baer [1], Chapter VII.