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By Nobuo KIMURA
Hokkaido Gakugei University
(Comm. by Kinjird6 KUNUGI, M.J.A., April 13, 1964)

Let X and Y be normal spaces. As for the covering dimension
of the product space XX Y we have known several cases for which
the following relation

(A) dim (XX Y)<dim X+dim ¥
holds.

Especially when Y is a separable metrizable space, (A) has been
proved in each of the following cases.

(a) X is metrizable ([2]).

(b) X is countably paracompact and normal, and Y is locally
compact ([2]).

In the present paper we shall prove (A) under the conditions
that Y is separable metrizable and XX Y is countably paracompact
and normal.

Recently E. Michael [1] has given a non-normal space XXY
which is a product space of a hereditarily paracompact normal space
X with a separable metric space Y. This space XX Y is not O0-
dimensional, nevertheless X and Y are 0-dimensional; thus (A) does
not hold.

Accordingly the normality of XX Y is indispensable.

The idea of the proof for our theorem is based on the “basic
coverings” introduced by K. Morita ([3]).

1. Henceforth Y always means a separable metrizable space.

Lemma 1. Suppose that dim Y=mn and let s be an arbitrary
positive integer: then there are locally finite countable coverings

BP={VP|a=1,2,---} 15l 1=1,2,- )
satisfying the following conditions (i) and (ii).

(i) L‘J%ﬁl) is an open basis of Y for any l(1<I<s).

(ii) The order of the family {BVP|i, a=1,2,-.+;1=1<s} is at
most m. (Here BV means VP— VL.

Proof. The existence of B satisfying (i) is well known (e.g.
[38]), and these may be considered as countable coverings for any 7
and [, according to separability of Y. Moreover, the existence of
such B that satisfy (ii) is assured by the shrinkability of the
covering B and [4].

Put WP (ay, agy+ -+, a)=VEOVEN--- NV
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Lemma 2. Let (ay,- -+, a.), By vy By (A -+, 2,) be m+1 sets,
each of which is a finite ordered set of positive inmtegers. Then
BW (g, a)NBW®@(By,- -+, )N - - NBWUP(2y,- -+, 2)=¢  for
125l<ly< o <l 5.

Proof. According to Lemma 1 (ii) we have

(BVEPUBVEU -+ - UBVE)N(BVERU - - UBVEY
N NE@VEU - UBVi)=.
But 3W¥(ay,: -, a,)C(BVEU - - UBVEE), thus the lemma is proved.

Theorem. If a product space XX Y of a space X with a sepa-
rable metrizable space Y is countably paracompact and mormal, then

dim (XX Y)<dim X+dim Y.

Proof. Suppose dim X=m and dim Y=n, and put s=m-+n-+1.

Let F'® and G be arbitrarily given closed sets and open sets
respectively such that FPCG® (11<s).

There are open sets L and M“(1<I<s) such that

F(”CM(”CWCL“)CI_T(T)CG(”.
We put
NOP=XXY—-M®%», N®=L®,
Then NV ={N®, N®} is an open covering of XX Y for any [
We put
(1) G%ay,---,a;k)=Int {x|eX WP(ay,- -, a) CNP} (=1, 2).
(Here Int A means the interior of the subset A.)
Then GV(ay,- -+, a3 k)X W®(ay,* -+, @;)CNP. By (1) we get im-
mediately GP(ay, -+, a; KE)CTG(ay, - -+, ay ag.q k).
Put GPay, ++, a)=G"(ay, -+, a3 HUGC(ay, -+, @55 2).
Then
GP(ay @) TGV (@ - oy @y @1q)-
Consequently {G¥(ay,- -+, a;) X W(ay,« -+, a;)|ay,* -, a; 1} is a basic
covering ([8]) for each .
Now, since XX Y is countably paracompact and normal, we get
a special refinement ([8]). That is to say, there exists a family
{FPayy+++, )| @y, -+ », ag; 1} of closed sets in X such that
FPay,- -, a,)CG@(ay,.+, a;) and that
{Fay, -+, a;) X W®(ay,« + +, ;)| @y,+ - +, a3 1} i8 a covering of XX Y.
From the relation that F%(a,-:-, a;)CGP(ay,: -, a; 1)U GP(ay,
-+, a; 2) it follows that there are closed sets
FPay,+++,a;1) and F%®(ay---,a;2) of X such that
Fay,- -, a)=FP(ay- -, a; DUFY(ay,- -+, a; 2) and
Fay- -, a5 )CTGV(ay, + -, a; k) (k=1, 2).
The relation (G%(ay,- -+, ag 1) X W®(ay,«+ -, a)) N FP=¢ is reduced
to (F%(ay a5 DX WP(ay,- + -, a)) NFC=9.
By the assumption that dim X=m, there is a family
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{(H%(ay, -+, a5 k) |ay,+ -, a5 1, 1518}

of open sets in X such that FP(ay,---, a;k)CTHY(ay, -+, a;k)
CG¥(ay,+ -+, az k) and that

(2) the order of {BHY(ay, -, a;k)|ay, -+, a;41=1<s; k=1, 2}
is at most m.

Let us put

( 3 ) H;Cl)z U {H(l)(alv cee, Oy 2) X W(D(aly' ) ai)'“l, tt ai}v

(4) K®P=U{H(ay, a5 )X WP(ay,+ -, )|y, -+, a}.
And put PO=H®, QP =K®— HP, Po=H®— U K, QP =K — U B

oo o =1 =1
(iz2), PO=UP® and @¥=U@p.”
i=1 i=1

Then we have

(5) XX Y=(UPP)U(UE),

( 6 ) P(”nQ(D=¢, F?CG(” (j=1, 2’, . ) and Q(”ﬂ]l—f(_“:qS.

Finally we put V®=XxXx Y—Q%; then we have

( 7 ) %V(L)C‘SBQ(D'

Since QPNMP=¢ by (6) and M is open, we have QPN M®
=¢, and hence FPCMPCV®,

On the other hand, since V¥=XXY—-QPC XX Y—';U e U117§T>

=1 i=

CG® we have

( 8 ) F(l)C V(l)cG(l).

Since P{P=P{J(PP—P{) and QP =05’ (QP—Q5) we have by

(5)

(9)  Xx¥Y=P°UQ®U(UBP)U(UBe").

Since P? is open, PY*NQP=¢ by (6), and hence

(10) PPNBQV=¢.

Combining (7) with (9) and (10), we have

(11) BVOCBQUC(JBPY)U(UBE).

On the other hand we have

a2 BPP=B(H— U KP)C(BH U BE)),

an

(13) BQPLC(BKLU (U BHS).

Now (11), (12), and (13) give us

(14) BVeC8QUc((BH®)U(UBK®),
hence we have = =

(15) NBVCCAIUBE)UJBED)].

Since {W%®(ay,- -+, a;)| ey, + +, a;} is locally finite, we have

* The argument below is the same as that in [6, Lemma 2.2].
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BHLPCLUBH (g, -+ a5 2) X Way, - -+, ) |ayy - -+ a}]
=[U{BH (ay," -+, a5 2)X WP(ay,* -+, a;) [y, - -y i} ]
U[U{H(D(av' Ty O Z)X%W(D(al" ) ai)la'v' < )]

in view of (8). Likewise
BEKOCLUBH (ay, -+, a5 )X WP(ay,+ « -, i) [y, -+ i} ]
U[U{H(D(an' Cey g I)X%W(D(alf ) ai)'“l:’ s a)]
in view of (4).
Let us put E®(ay,:--,a; k)=BH(ay,- -, a; k)X WP(ay,- - -, a;)
and E(ay,- -+, a5 k)y=HP(ay,- -+, a; k) XBW P (ay,- -+, a,).
Then (14) can be expressed as
(14,) %V(UC U {El(l)(a'lv Crty Uy k) UE2(D(a1" cey Ay k) | [LSTRREN M /";

k=1, 2}.
The right hand side of (15) is a union of sets of the form
(16) E(as®,- - -, i) k) NE(af®, -+ -, s ko)

N--NE(a?,- -, a5 k)
in view of (14'). Here each of §,,---,0, ky,- -+, k, is 1 or 2,
Let us suppose that
3y =0y="-=08,=1, §,=0,=+--=0;,=2 (p+g=s).

If p=n+1 then (16) is empty by (2), on the contrary if p<n+1
then ¢g=s—p=(m+n+1)—p=m-+1 and (16) is also empty by Lemma
1. Thus (16) is empty in any case.

Consequently the right hand side of (15) is empty, hence we have

(17) lﬁlSBV‘”zng.

Now the theorem follows from (8) and (17) ([4]).

2. If Xis perfectly normal, then XX Y is perfectly normal ([5]),
and hence countably paracompact normal. The following Corollary
1 follows directly from the theorem.

Corollary 1. If X is a perfectly normal space and Y is separ-
able metrizable, then

dim (XX Y)=dim X+dim Y.

If Y is a countable union of locally compact subsets then XX Y
is countably paracompact normal for any countably paracompact
normal space X ([8]), hence the following Corollary 2 follows.

Corollary 2. If X is a countably paracompact normal space
and Y 1s a separable metrizable space which is a countable union
of locally compact subsets, then

dim (XX Y)<dim X+dim Y.

3. Finally we shall show that Michael’s space defined in [1]
serves as a counter example for (A).

Let X be a topological space which is obtained from the closed
unit interval [0,1] by retopologizing it so that a set M is open if
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and only if M is expressed as M=G(JL with an open set G in the
usual sense and with L consisting of irrationals. Then dim X=0.

To show this we may construet such an open refinement of a
given covering {U,, U,,---, U,} that its order is 1.

Let {p,, ps,- - -} be the set of all rationals; then there is an interval
(2, #5) (2; and p,; are irrational numbers in [0,1]) for any ¢ which is
a neighborhood of p, and which is contained in one of {U;}. Then
{(2;y #))1=1,2,---} is a family of open subsets of X each of which
is contained in some element of {U,}.

Now

(27‘,’ ﬂt)— )’L<Jil:lc7 Iut]

is expressed as a disjoint union of finite open intervals whose end
points are irrational numbers. Accordingly

{pj IJ‘:]-: 2,-- '}C;;l.'(am 181)9
where «; and B, are irrational numbers and > stands for a disjoint

union,

Let us put

A=X— ;(au .8@)’

then A is a subset of irrationals.

We put

V,=U{(@ B) (s, B)E U, for 1<, (e, B)CU,}
U{x|xecA, x¢ U, for I<j, zcU,;}.

Clearly {V,, V,,---, V,} is a disjoint family and it is the desired
refinement of {U,, Us,---, Uy}, and dim X=0 follows.

Let Y be a subspace of closed interval [0,1] consisting of all
irrationals. Then, as is well known, dim Y=0.

E. Michael has shown ([1]) that XX Y is not normal. Generally
any 0-dimensional space is always normal, hence XX Y is not 0-

dimensional, and hence
dim XX Y>dim X+4dim Y.
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