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1. Introduction. In this note we shall remark the superfluity
of the condition IV of the uniqueness theorems obtained in the previous
note 5. As Theorem 1 is fundamental among Theorems in [5, we
shall only indicate the modifications to be done in its proof. That
theorem is related as the following:

Theorem 1 in [5]. P(x, D)--Po(x, D)+V(x, D),

Po(x, D)-- a.(x)D, V(x, D)- a,(x)D".*)
l-:m:=l =I la:ml<l-

I. (1) m,>_m,. (2) The coelcients of Po(x, D) are in

and those of Q(x, D) are in C(9) and bounded on 12, where 12 is a
domain containing x-O. (3) For ----(ml, 0,..., 0), a(0)=0.

II. Po(x, D) is semi-elliptic at x-O, i.e. Po(O, ) does not vanish
for any non-zero real vector .

III. Let --1() be a root of Po(O,’5, )--0, then Po()(O, 5, ) does

not vanish for any non-zero real vector .
IV. Let be N--(--1, 0,..., 0), N--(N, N,..., N) where N/s are

real, and $+irN=($+irNt,...,+irNn) where r is a real number.
For rex>_2 there are neighborhoods U0(0) of x-O, Vo(N) of N, and
a constant Co such that

=I l:ml----l----- =i

holds for any x U0(0), any N Vo(N) and any (, r)nxR, r>_l.

Suppose that I, II, III and IV hold. Then there exist the constants
C, 80>0, M>_I, and for any ’eal number r, satisfying <o, v> M,

(1.2) dx
[a:mll

<_ cf P(x, D)u exp (2rf(x)) dx

and U(O) is aholds if u e C( U(O)), where (x) is

neighborhood depending on 8.
2. The superfluity of the condition IV. We first used the

*) =(, .,-.., n)]; integer _>0, m=(m,, m2,..., nn)m; integer >0, ]’m ]=

For the other notations, see [5].
=i n]
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condition IV to estimate the third term in the right hand side of the
inequality (5.8) in [5 (p. 788);

f ex,
[a:m] =I

+(r) N N Du, exp (2r) dx.
mj

However this term is an estimation of

() dx

on the support of ua. So the above third term can be replaced by

D(:)f Du ex (,) dx.
:ml=-

Then by using (4.9) in [5] (p. 785), for any ; a’m-l--
there exists at least one ; [’m]-I such that

dx

holds.
Thus we get for a constant D

By transfering this term in (5.8) from the right to the left, and by
choosing small properly, we get for a constant D

f[Du exp (2r)dxDf[]Po(x, D)ui+(:)iP(x, D)u]l-:mI =I
x exp (2:) dx.

Thus in this case we can avoid to use the condition IV.
Next we used the condition IV to prove the inequality (5.14) in [5];

A_gD(r) A+A A_=1 mj =1

w , not [IDix (,) ana [o(, D)u
X exp (2:)dx respectively for uC(D).
Taking notice that we need the above inequality, to get (1.2), only
for uCo(U,(0)), we an use (5.15) in 5];
v(Iv)A_CA for each j, uC(U(0)) and

y this, we can calculate the following:

A_--(A_)(A_) C[:(+:)]- A(A_)m mj mg

=C"[r(1 +ar)]- j
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Thus we get (5.14) in 5 without the condition IV. The superfluity
has proved.

3. Typical examples satisfying the conditions I, II and HI.
(1) In the ease of m--m.--...--m Po(:C, D) satisfying I, II and

III is the elliptic operator same as that treated by L. HSrmander
(see [1_).

2 The heat operator Po(D)--D+D+... -D_I+iD satisfies
I, II and III for m--m.--. m_-- 2, m-- 1.

(3) Po(x, D)-’(iD)n+a(x)D, n; odd number 3, a(x)>O, a(x)
eC/(9), satisfies I, II and III for m-n, m.=2. This result is due to
M. Picone (see [3 and [_4]). He proved for any integer :>2.

(4) Po(D)--(iD),+a(iD)’., m>m, one is odd, the other is
even, a; a constant :0, satisfies I, II and III. This result is due to
L. Nireberg (see [2]). He proved the uniqueness without "odd, even"
restriction on m and
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