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86. A Note on Statistical Metric Spaces

By Itaru KUROSAKI
Osaka University of Liberal Arts and Education

(Comm. by Kinjir5 KUNUGI, M.J.A., June 12, 1964)

1. Introduction. Statistical metric space is a space in which
a probability distribution function Fq(x) is associated with each pair
(p, q) of its points, while in a metric space a definite non-negative
number is made to correspond to each pair. Some restrictions like
the axioms of distances in metric spaces should be placed on the
distribution functions of statistical metric spaces. One can find a
typical formulation of these conditions together with a brief history

of this kind of spaces and the references in [lJ by B. Schweizer and
A. Sklar. Several interesting results obtained by these authors and
by E. Thorp are found also in 2, [3, 4, and 5. In the series
of these treatises, an axiom

Fpr(X+y) T(Fpq(x), Fqr(y)) 1
plays an important role throughout, where T(u, v) is a function de-
fined in the unit square and satisfies conditions such as

T(a, b)- T(b, a), T(a, 1)--a, T(0, 0)--0 etc.
This axiom corresponds to the triangular inequality in the metric
spaces. Now here we have an important problem how to define a
topology in a statistical metric space S. In the papers listed above, a
topological structure of S is given by the system of neighbourhoods
{N(z, )}, where

N(s, )- {q; Fq(S) > 1--,}.
This scheme is closely connected to the convention

F(x)H(x)_ [lo xOx<=O
It is to be noted that S is a Hausdorff space with the system of
neighbourhoods [N(s, 2)} and F(x) is continuous with respect to (p, q).
But some additional assumptions other than the conditions on t-func-
tions are necessary to obtain the latter result.

In this note, we first define a topology in the space of distribu-
tion functions and then reflecting this structure, a topology will be
introduced into S to the effect that S is a Hausdorff space and F
is continuous with respect to (p, q) without t-functions.

2. Topology in the space of distribution functions. is the
set of all functions F() of a real variable x having properties i)
non-negative valued, ii) monotone increasing, iii) right eontinuous,

iv) F()--O for x<O, and v) F()-I as x-+oo.
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In what follows, F(), G(x),... will be abbreviated as F, G,... and
FG means F(x)

_
G(x).

DEFINITION 1. Suppose ] is given and 0]1.
i) If a value of x such that F(x)=] is uniquely determined,

this value is x(F, ).
ii) If F(x)=] for x belonging to an interval (x,x)and F(x)-y

outside,, x(F, ]) 1/2(x + x.).
iii) If F(x)#] for each x, greatest lower bound of x such that

F(x)>] should be taken as x(F, ]).
The condition 0]1 will not be written explicitly in the following.

DEFINITION 2. Being given positive numbers and ], we put
V(s, F)= [G(x); _t(0t< 1), V], Ix(F, ])-x(G, ])1 ts}, where t is
associated with each G(x) for each V(,F). V(,F) is an -neigh-
bourhood of F in .

We obtain the following propositions immediately:
PROPOSITION 1. If 0 e then V(el, F)C V(s2, F).
PROPOSITION 2. If FI V(s, F) and F. V(s2, F) then

F.e V(+., F).
Now we can prove an important proposition.
PROPOSITION 3. with the system of neighbourhoods {V(z, F)}

is a Hausdorff space.
PROOF. i) It is evident that Fe V(s, F).
ii) If Fe V(s, F) then by definition there exists t, such that

0< tF, < 1, VT, [x(r, 7)-x(F, 7) < tF,s.
Put e=(1--t,)e, then e>0 and for Ge V(z, F) there exists t such
that

0<t< 1, W], Ix(F, ])- x(G, ])] <t.
Now putting t, -- t--tt--t we have 0<t< 1 so that

Y7, Ix(F, 7)--x(a, 7) < tz,
this proves that V(s, F) V(s, F).

iii) If s:e., suppose s<e. It is an immediate consequence of
the Proposition 1 that

V(, F) V(, F)-- V(1, F).
iv) In case where F#G, there exists ] such that

x(F, 7) - x(G, 7).
For two positive numbers s and s. satisfying

s-e< Ix(F, 7)-x(G, 7)1,
it holds that

v(, F) Y(e, a)=.
:. Topology- of So The mapping from SS into should be

subjected to the following axioms:
Axiom I. An element F(x) of is associated with each element

(p, q) of SS.
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Axiom II. Fq(X)-F(x).
Axiom III. If p#q then there exists a point r of S such that

DEFINITION 3. Being given a positive number e we put
W(e, p)-{q; Vr, Fq V(e, r)},

and W is the family of W(e, p) for all e(>0) and p(eS).
DEFINITION 4. For each point p of S, the neighbourhood system

{U(p)} of p is the family consisting of all finite intersections of W’s
belonging to W and containing p.

PROPOSITION 4. S with the system of neighbourhoods U(p)}(pe S)
is a Hausdorff space.

PROOF. Three conditions i) pe U(p), ii) if q e U(p) there exists
U(q) contained in U(p), and iii) there exists U(p) contained in U(p)
U(p) are easily verified.

iv) If p#q it is certain by Axiom III that there exists a point
r for which Fr#Fq. Proposition 3 enables us to choose a positive
number for this r such that

v(, F) V(, F)- ( 2 )
Suppose now-that W(s, p)and W(e, q) have a point s in common,
then for these s and r we have

F. Y(. F) V(, F)
which contradicts (2). Thus, taking W(e, p) and W(, q) respectively
as U(p) and U(q), we conclude

v(p) V(q) .
4. Continuity of Fq with respect to (p,
PROPOSITION 5. rq is continuous with respect to (p, q).
PROOF. Being given a positive number e and (p,q)(eSxS), let

e=e and take neighbourhoods of p and q as
v()- w(. ). V(q)= w(, ).

Then for p’e U(p) and q’e U(q) we have
vr, F, Y(, rr) ( S )
Vs, F,, V(, r,). ( a )

Let r--q in (3) and s-p’ in (4). Then by Proposition 2 we obtain

Fv V(, r), r, V(, rv)
and consequently , v(, r)
which proves that Fq is continuous with respect to (p, q).

Remarks. We intentionally disregarded the convention which
specifies F(x) as H(x) (unit step function). Though there arises no
difficulty from this convention, some modifications would prove pref-
erable if the definition of W(, p) appeared too restrictive in the
case where F(x)H(x). In this case, introducing a new parameter, V(e, F) may be substituted by
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V(e, 2, F)--[G(x); ]to, VV, 0<V-<2<l, Ix(F, V)-x(G, V)[ <toe},
so W(e, p) too by W(e, I, p) and so on. It is not difficult to see that
main results obtained above remain unchanged through such modifica-
tions.
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