83. An Aspect of Local Property of $\left|\mathbf{N}, p_{n}\right|$ Summability of a Factored Fourier Series

By Lal Mani Tripathi
Department of Mathematics, University of Allahabad, India
(Comm. by Kinjirô Kunugi, m.J.A., June 12, 1964)

1. A series $\sum a_{n}$ with partial sums s_{n} is summable to sum s by the Nörlund method (N, p_{n}) if

$$
\begin{equation*}
t_{n}=\left\{\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}\right\} \rightarrow s, \tag{1.1}
\end{equation*}
$$

as $n \rightarrow \infty$, where $P_{n}=\sum_{\nu=0}^{n} p_{n}$ and $p_{\nu}>0$ [2]. The series $\sum a_{n}$ is said to be absolutely summable (N, p_{n}), or summable $\left|N, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation [4]. The conditions for the regularity of the summability (N, p_{n}) defined by (1.1) are

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{n} / P_{n}=0, \text { and } \sum_{\nu=0}^{n}\left|p_{\nu}\right|=0\left(P_{n}\right) . \tag{1.2}
\end{equation*}
$$

In the special case in which

$$
p_{n}=\binom{n+\alpha-1}{\alpha-1}=\frac{\Gamma(n+\alpha)}{\Gamma(n+1) \Gamma(\alpha)} \quad(\alpha>0)
$$

the Nörlund mean reduces to the familiar Cesàro mean of order α [2]. And for the value for which

$$
p_{n}=\frac{1}{n+1} ; \quad P_{n} \sim \log n
$$

the Nörlund mean reduces to the harmonic mean [6].
Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality, we may assume that the constant term in the Fourier series of $f(t)$ is zero, that is,

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

and

$$
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) .
$$

We use the following notations:-

$$
\begin{aligned}
\phi(t) & =\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}, \\
\Phi_{\alpha}(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u \quad(\alpha>0), \\
\Phi_{0}(t) & =\phi(t), \\
\phi_{\alpha}(t) & =\Gamma(\alpha+1) t^{-\alpha} \Phi_{\alpha}(t) \quad(0 \leq \alpha \leq 1) .
\end{aligned}
$$

2. In 1957 Prasad and Bhatt [5] established the following theorem:

Theorem A. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, and $\phi_{\alpha}(t)(0 \leq \alpha \leq 1)$ is of bounded variation in $(0, \pi)$, then the series $\sum \lambda_{n} A_{n}(t)$, at $t=x$, is summable $|C, \alpha|$.

Since a Lebesgue integral is absolutely continuous, it is plain that $\phi_{1}(t)$ is of bounded variation in any range $(\delta, \pi), \delta>0$. A necessary consequence of the above result is the following theorem:

Theorem B. The summability $|C, 1|$ of the factored Fourier series $\sum \lambda_{n} A_{n}(t)$ at a given point depends only upon the behaviour of the generating function in the immediate neighbourhood of the point and is thus a local property.

Very recently Lal [3] proved the following theorem:
Theorem C. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then the summability $\left|N, \frac{1}{n+1}\right|$ of the series $\sum\left\{A_{n}(t) \times\right.$ $\left.\log (n+1) \lambda_{n} / n\right\}$ at a point can be ensured by a local property.

Applying the absolute Nörlund summability method, which is more general than both the $|C, 1|$ summability and absolute harmonic summability, the object of this paper is to investigate a suitable type of factor so that the summability $\left|N, p_{n}\right|$ of the factored Fourier series becomes a local property.

In what follows we establish the following
Theorem. If $\left\{p_{n}\right\}$ and $\left\{p_{n}-p_{n+1}\right\}$ are both non-negative and non-increasing and $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then $\left|N, p_{n}\right|$ summability of $\sum A_{n}(t) \lambda_{n} P_{n} / n$ depends only on the behaviour of the generating function $f(t)$ in the immediate neighbourhood of the point $t=x$.

It is evident that Theorems B and C follow as special cases of our theorem in the cases in which $p_{n}=1$ and $p_{n}=\frac{1}{n+1}$ respectively.
3. The proof of the theorem is based on the following lemma.

Lemma ([1], Theorem 1). Suppose that $f_{n}(x)$ is measurable in (a, b) where $b-a \leq \infty$, for $n=1,2, \cdots$. Then a necessary and sufficient condition that, for every function $\lambda(x)$ integrable (L) over (a, b), the functions $f_{n}(x) \lambda(x)$ should be integrable (L) over (a, b) and

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{b} \lambda(x) f_{n}(x) d x\right| \leq K
$$

is that

$$
\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \leq K
$$

where K is an absolute constant, for almost every x in (a, b).
4. Proof of Theorem. Since

$$
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} P_{n-\nu} u_{\nu}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} P_{\nu} u_{n-\nu},
$$

where

$$
u_{n}=\frac{A_{n}(t) P_{n} \lambda_{n}}{n}
$$

we have

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{\nu=0}^{n-1}\left(\frac{P_{\nu}}{P_{n}}-\frac{P_{\nu-1}}{P_{n-1}}\right) u_{n-\nu} \\
& =\frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) u_{n-\nu} \\
& =\frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1}\left(P_{n} p_{n-\nu-1}-P_{n-\nu-1} p_{n}\right) u_{\nu+1} .
\end{aligned}
$$

For the Fourier series of $f(t)$ at $t=x$,

$$
A_{n}(t)=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t
$$

so that

$$
\begin{aligned}
t_{n}-t_{n-1} & =\frac{2}{\pi} \int_{0}^{\pi} \phi(t)\left\{\frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right) \frac{P_{k+1} \lambda_{k+1}}{k+1} \cos (k+1) t\right\} d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \phi(t) K(n, t) d t
\end{aligned}
$$

say.
Hence

$$
\sum_{n=2}^{\infty}\left|t_{n}-t_{n-1}\right| \leq \sum_{n=2}^{\infty}\left|\frac{2}{\pi} \int_{0}^{\pi} \phi(t) K(n, t) d t\right|+\sum_{n=2}^{\infty}\left|\frac{2}{\pi} \int_{0}^{\delta} \phi(t) K(n, t) d t\right| .
$$

Thus in order to prove the theorem we have to establish that

$$
\sum_{n=2}^{\infty}\left|\frac{2}{\pi} \int_{\delta}^{\pi} \phi(t) K(n, t) d t\right|<\infty .
$$

But by virtue of the Lemma, it is sufficient for our purpose to show that

$$
\begin{equation*}
\sum_{n=2}^{\infty}|K(n, t)| \leq A, \tag{4.1}
\end{equation*}
$$

for $0<\delta \leq t \leq \pi$, where A is a positive constant not necessarily the same one each time it occurs.

Now

$$
\begin{aligned}
\sum_{n=2}^{m}|K(n, t)| & =\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right) \frac{P_{k+1} \lambda_{k+1} \cos (k+1) t}{k+1}\right| \\
& =\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1} M(n, t)\right|,
\end{aligned}
$$

say.
Applying Abel's transformation, we get

$$
\begin{aligned}
\sum_{k=0}^{n-1} M(n, t)= & \sum_{k=0}^{n-2}\left[\Delta\left\{\left(P_{n} P_{n-k-1}-P_{n-k-1} p_{n}\right) \frac{P_{k+1} \lambda_{k+1}}{k+1}\right\} \sum_{\nu=0}^{n} \cos (\nu+1) t\right] \\
& +\left(P_{n} p_{0}-P_{0} p_{n}\right) \frac{P_{n} \lambda_{n}}{n} \sum_{\nu=0}^{n-1} \cos (\nu+1) t .
\end{aligned}
$$

Therefore, for $0<\delta \leq t \leq \pi$, we have

$$
\begin{aligned}
\left|\sum_{k=0}^{n-1} M(n, t)\right| & \leq A \sum_{k=0}^{n-2}\left|\Delta\left\{\left(P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right) \frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right|+A P_{n}^{2} \frac{\lambda_{n}}{n} \\
& =A\left[\sum_{1}+\sum_{2}\right]
\end{aligned}
$$

say.
Clearly

$$
\begin{equation*}
\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}}\left|\sum_{2}\right| \leq A \sum_{n=2}^{m} \lambda_{n} / n=O(1) \tag{4.2}
\end{equation*}
$$

as $m \rightarrow \infty$.
Now

$$
\begin{align*}
\sum_{1} \leq & \sum_{k=0}^{n-2}\left|\Delta\left\{P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right\}\right| \frac{P_{k+1} \lambda_{k+1}}{k+1} \\
& +\sum_{k=0}^{n-2}\left|\left(P_{n} p_{n-k-2}-P_{n-k-2} p_{n}\right) \Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
= & \sum_{11}+\sum_{12} \tag{4.3}
\end{align*}
$$

say.
Now

$$
\begin{align*}
\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}} \sum_{11}= & \sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-2}\left|\Delta\left\{P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right\}\right| \frac{P_{k+1} \lambda_{k+1}}{k+1} \\
= & \sum_{k=0}^{m-2} \frac{P_{k+1} \lambda_{k+1}}{k+1} \sum_{n=k+2}^{m} \frac{\left|\Delta\left(P_{n} p_{n-k-1}-P_{n-k-1} p_{n}\right)\right|}{P_{n} P_{n-1}} \\
\leq & \sum_{k=0}^{m-2}\left(\frac{P_{k+1} \lambda_{k+1}}{k+1}\right) \sum_{n=k+2}^{m}\left[\frac{\left|\Delta p_{n-k-1}\right|}{P_{n-1}}+\frac{p_{n-k-1} p_{n}}{P_{n} P_{n-1}}\right] \\
= & O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1} \sum_{n=k+2}^{m}\left|\Delta p_{n-k-1}\right|\right] \\
& +O\left[\sum_{k=0}^{m-2} \frac{P_{k+1} \lambda_{k+1}}{k+1} \sum_{n=k+2}^{m} \frac{p_{n}}{P_{n} P_{n-1}}\right] \\
= & O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1}\right] \tag{4.4}\\
= & O(1) .
\end{align*}
$$

Again

$$
\begin{align*}
\sum_{12}= & \sum_{k=0}^{n-2}\left|\left(P_{n} p_{n-k-2}-P_{n-k-2} p_{n}\right) \Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
\leq & \sum_{k=0}^{n-2}\left(P_{n}-P_{n-k-2}\right) p_{n}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
& +\sum_{k=0}^{n-2}\left(p_{n-k-2}-p_{n}\right) P_{n}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
= & \sum_{121}+\sum_{122} \tag{4.5}
\end{align*}
$$

say.
Now

$$
\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}} \sum_{121}=\sum_{n=2}^{m} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=0}^{n-2}\left(P_{n}-P_{n-k-2}\right)\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right|
$$

$$
\begin{align*}
= & \sum_{k=0}^{m-2}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \sum_{n=k+2}^{m}\left(P_{n}-P_{n-k-2}\right) \Delta\left(\frac{1}{P_{n-1}}\right) \\
\leq & A \sum_{k=0}^{m-2}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| P_{k+2} \sum_{n=k+2}^{m} \Delta\left(\frac{1}{P_{n-1}}\right) \\
= & O\left[\sum_{k=0}^{m-2}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right|\right] \\
= & O\left[\sum_{k=0}^{m-2} \left\lvert\, \frac{p_{k+1} \lambda_{k+1}}{k+1}\right.\right]+O\left[\sum_{k=0}^{m-2} \frac{P_{k+1} \Delta \lambda_{k+1}}{k+1}\right] \\
& +O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1} \frac{P_{k+1}}{k+2}\right] \\
= & O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1}\right]+O\left[\sum_{k=0}^{m-2} \Delta \lambda_{k+1}\right] \\
= & O(1) \tag{4.6}
\end{align*}
$$

as $m \rightarrow \infty$, since $P_{n}-P_{n-k-2}$ decreases as n increases.

> Also

$$
\begin{align*}
\sum_{n=2}^{m} \frac{1}{P_{n} P_{n-1}} \sum_{122}= & \sum_{n=2}^{m} \frac{1}{P_{n-1}} \sum_{k=0}^{n-2}\left(p_{n-k-2}-p_{n}\right)\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
\leq & \sum_{n=2}^{m} \frac{1}{P_{n-1}} \sum_{k=0}^{n-2}\left(p_{n-k-2}-p_{n-k-1}\right)(k+2)\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \\
= & \sum_{k=0}^{m-2}(k+2)\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \sum_{n=k+2}^{m} \frac{p_{n-k-2}-p_{n-k-1}}{P_{n-1}} \\
\leq & \sum_{k=0}^{m-2} \frac{(k+2)}{P_{k+1}}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right| \sum_{n=k+2}^{m}\left(p_{n-k-2}-p_{n-k-1}\right) \\
= & O\left[\sum_{k=0}^{m-2} \frac{(k+2)}{P_{k+1}}\left|\Delta\left\{\frac{P_{k+1} \lambda_{k+1}}{k+1}\right\}\right|\right] \\
= & O\left[\sum_{k=0}^{m-2} \frac{(k+2) p_{k+1}}{P_{k+1}} \frac{\lambda_{k+1}}{k+1}\right]+O\left[\sum_{k=0}^{m-2} \Delta \lambda_{k+1}\right] \\
& +O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1}\right] \\
= & O\left[\sum_{k=0}^{m-2} \frac{\lambda_{k+1}}{k+1}\right]+O\left[\sum_{k=0}^{m-2} \Delta \lambda_{k+1}\right] \\
= & O(1) . \tag{4.7}
\end{align*}
$$

With the help of results from (4.2) to (4.7), (4.1) follows, which completes the proof of the theorem.

I am very much indebted to Professor B. N. Prasad, F.N.I. for his kind interest and advice in the preparation of this paper.

References

[1] Bosanquet, L. S., and Kestelman, H.: The absolute convergence of a series of integrals. Proc. Lond. Math. Soc., 45, 88-97 (1939).
[2] Hardy, G. H.: Divergent Series. Oxford (1949).
[3] Lal, S. N.: On the absolute harmonic summability of the factored Fourier series. Proc. Amer. Math. Soc., 14, 311-319 (1963).
[4] Mears, Florence M.: Some multiplication theorems for the Nörlund mean. Bull. Amer. Math. Soc., 41, 875-880 (1935).
[5] Prasad, B. N., and Bhatt, S. N.: The summability factors of a Fourier series. Duke Math Jour., 24, 103-120 (1957).
[6] Riesz, M.: Sur l'équivalence de certaines méthodes de sommation. Proc. Lond. Math. Soc., (2), 22, 412-419 (1924).

