104. A Remark on a Construction of Finite Factors. I

By Hisashi CHODA and Marie ECHIGO Department of Mathematics, Osaka Gakugei Daigaku (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1964)

1. In the previous paper [1], we have introduced in von Neumann algebras the following algebraical property:

DEFINITION. A von Neumann algebra \mathcal{A} has the property Q, if there exists an amenable group \mathcal{G} of unitary operators of \mathcal{A} , which generates \mathcal{A} . In this case, the group \mathcal{G} will be called an *amenable* generator of \mathcal{A} .

In the present note, we shall treat a relation between the property Q and the crossed product of von Neumann algebras introduced by Turumaru [8]. Actually, we shall show that G is amenable whenever $G \otimes \mathcal{A}$ has the property Q in Theorem 1. Consequently, we can reproduce in Theorem 2 that the crossed product of the hyperfinite continuous factor by a certain group of outer automorphisms is not hyperfinite, cf. [4]. Furthermore, we shall see in Theorem 3 that the so-called measure theoretic construction of Murray and von Neumann [5] produces the hyperfinite factor only if the given ergodic group of measure-preserving transformations is amenable.

In what follows, we shall use the terminologies and the notations of Dixmier's text book [2] without further explanations.

2. Since the discussion to follow makes heavy use of the concept of the crossed product of von Neumann algebras developed by [3], [7] and [8], we review this matter briefly.

We shall denote a function on an enumerable group G of outer automorphisms of a von Neumann algebra \mathcal{A} by $\Sigma_{g} g \otimes A_{g}$ where $A_{g} \in \mathcal{A}$ is the value of the function at $g \in G$. Let \mathcal{D} be the set of all functions such that $A_{g}=0$ up to a finite subset of G. Besides the usual addition and the scalar multiplication, \mathcal{D} becomes a *-algebra by the following operations:

$$(\Sigma_g g \otimes A_g)(\Sigma_h h \otimes B_h) = \Sigma_{g,h} g h \otimes A_g B_h^{g^{-1}}$$

and

$$(\Sigma_g g \otimes A_g)^* = \Sigma_g g^{-1} \otimes A_g^{g*}.$$

Let φ_0 be a faithful normal trace of \mathcal{A} which is invariant under G, then we shall introduce the trace φ in \mathcal{D} by

$$\varphi(g \otimes A_g) = \begin{cases} \varphi_0(A_g) & \text{for} \quad g = 1 \\ 0 & \text{for} \quad g \neq 1 \end{cases}$$

and

$$\varphi(\Sigma_g g \otimes A_g) = \Sigma_g \varphi(g \otimes A_g).$$

Let \mathcal{H} be the representation space of \mathcal{A} by φ_0 , then $G \otimes \mathcal{H}$, in the sense of Umegaki [8], is the representation space of \mathcal{D} by φ , and \mathcal{D} is represented faithfully on $G \otimes \mathcal{H}$ since φ is faithful on \mathcal{D} . If we define the operator $\mathbf{1} \otimes A$ on $G \otimes \mathcal{H}$ for $A \in \mathcal{A}$ by

 $(1\otimes A)(\Sigma_g g\otimes A_g) = \Sigma_g g\otimes AA_g,$

then \mathcal{A} is isomorphic to $1 \otimes \mathcal{A}$. Hence we shall identify them. The crossed product $G \otimes \mathcal{A}$ of \mathcal{A} by G is the weak closure of \mathcal{D} on $G \otimes \mathcal{H}$, that is, $G \otimes \mathcal{A}$ is the von Neumann algebra generated by \mathcal{A} and $\{U_g; g \in G\}$ on $G \otimes \mathcal{H}$, where U_g is defined by

$$V_{q}(\Sigma_{h} h \otimes A_{h}) = \Sigma_{h} gh \otimes A_{h}^{g^{-1}},$$

for any $\Sigma_h h \otimes A_h \in \mathcal{D}$, being considered \mathcal{D} as a dense linear subset of $G \otimes \mathcal{H}$.

3. At first we shall begin with the following

LEMMA 1. Let \mathcal{A} be the von Neumann algebra acting on a Hilbert space \mathcal{H} . If \mathcal{A} has the property Q and \mathcal{A}' is finite, then there exists a linear functional τ defined on $\mathcal{L}(\mathcal{H})$, the algebra of all operators on \mathcal{H} , having the following properties:

- (a) $\tau(1) = 1$,
- (b) $\tau(A'T) = \tau(TA')$ for $A' \in \mathcal{A}'$ and $T \in \mathcal{L}(\mathcal{H})$,
- (c) $\tau(T) \ge 0$ for $T \ge 0$ and $T \in \mathcal{L}(\mathcal{H})$,
- (d) $\tau(T^*) = \tau(T)^*$ for $T \in \mathcal{L}(\mathcal{H})$,
- (e) $\tau(U'TU'^*) = \tau(T)$ for $T \in \mathcal{L}(\mathcal{H})$,

where U' is a unitary operator of \mathcal{A}' .

Proof. Let \mathcal{G} be the amenable generator of \mathcal{A} . For any operator $T \in \mathcal{L}(\mathcal{H})$, put

$$\sigma(T) = \int_{G} UTU^* dU,$$

where the integration means the operator Banach mean on \mathcal{G} in the sense of $[1; \S 2]$, then σ becomes a linear mapping from $\mathcal{L}(\mathcal{H})$ into \mathcal{A}' . By the assumption, \mathcal{A}' is a finite von Neumann algebra, so that there exists a normalized trace ψ on \mathcal{A}' . Define $\tau(T) = \psi[\sigma(T)]$. We have shown in [1; Lemma 2] that the mapping τ satisfies the property (a), (b), (c), and (d). Since $\sigma(A'TB') = A'\sigma(T)B'$ for $A', B' \in \mathcal{A}'$, cf. $[1; \text{Lemma } 1], \tau(U'TU'^*) = \psi[\sigma(U'TU'^*)] = \psi[U'\sigma(T)U'^*] = \psi[\sigma(T)] = \tau(T)$, for any unitary operator $U' \in \mathcal{A}'$, whence (e) is proved.

THEOREM 1. Let \mathcal{A} be the von Neumann algebra of finite type, G an enumerable group of outer automorphisms on \mathcal{A} , and φ_0 the finite faithful normal trace on \mathcal{A} which is invariant under G. If the crossed product $G \otimes \mathcal{A}$ of \mathcal{A} by G is the von Neumann algebra having the property Q, then G is an amenable group.

To prove the theorem, we need the following

LEMMA 2. Let \mathcal{H} be the representation space of \mathcal{A} by φ_0 . Then there exists an operator $T_x \in \mathcal{L}(G \otimes \mathcal{H})$ for $x \in L^{\infty}(G)$ having the follow-

- (1) $T_{ax+\beta y} = \alpha T_x + \beta T_y$, where α and β are scalars,
- $(2) \quad T_1 = 1,$
- (3) $T_x \ge 0$ for $x \ge 0$,
- (4) $U_g^*T_xU_g = T_{x_g}$ for any $g \in G$, where $x_g(h) = x(gh)$.

Proof. We define the operator T'_x on \mathcal{D} (in §2) as follows: $T'_x(g \otimes A_g) = x(g)g \otimes A_g$ and $T'_x(\Sigma_g g \otimes A_g) = \Sigma_g T'_x(g \otimes A_g)$, for any $x \in L^{\infty}(G)$ and any $\Sigma_g g \otimes A_g \in \mathcal{D}$. This T'_x is clearly bounded, and can be extended to the operator T_x on $G \otimes \mathcal{H}$. It is plain by the definition that T_x satisfies the properties (2) and (3).

$$T_{ax+\beta y}(\Sigma_{g} \ g \otimes A_{g}) = \Sigma_{g} (ax(g) + \beta y(g))g \otimes A_{g}$$

$$= \alpha \Sigma_{g} x(g)g \otimes A_{g} + \beta \Sigma_{g} y(g)g \otimes A_{g}$$

$$= (\alpha T_{x} + \beta T_{y})\Sigma_{g} \ g \otimes A_{g},$$
for any $\Sigma_{g} \ g \otimes A_{g} \in \mathcal{D}$, whence (1) is proved. And
$$U_{g}^{*}T_{x}U_{g}(\Sigma_{h} \ h \otimes A_{h}) = U_{g}^{*}T_{x}(\Sigma_{h} \ gh \otimes A_{h}^{g^{-1}})$$

$$= U_{g}^{*}(\Sigma_{h} x(gh)gh \otimes A_{h}^{g^{-1}})$$

$$= \Sigma_{h} x(gh)h \otimes A_{h}$$

$$= T_{xg}(\Sigma_{h} \ h \otimes A_{h}),$$

for any $\Sigma_h h \otimes A_h \in \mathcal{D}$ and for any $g \in G$, whence (4) is proved.

Proof of Theorem 1. Since $G \otimes \mathcal{A}$ has the property Q, and $(G \otimes \mathcal{A})'$ is involutionally isomorphic to $G \otimes \mathcal{A}$ on $G \otimes \mathcal{H}$ by [8], $(G \otimes \mathcal{A})'$ has the property Q. Hence there exists a linear functional τ on $\mathcal{L}(G \otimes \mathcal{H})$ by Lemma 1. Put

$$\int_{G} x(g) dg = \tau(T_x) \text{ for any } x \in L^{\infty}(G).$$

Then it is sufficient to prove the theorem that $\int_{G} x(g) dg$ satisfies the

following conditions:

$$1^{\circ} \qquad \int [\alpha x(g) + \beta y(g)] dg = \alpha \int x(g) dg + \beta \int y(g) dg,$$

$$2^{\circ} \qquad \int x(g) dg \ge 0 \text{ if } x(g) \ge 0 \text{ for all } g \in G,$$

$$3' \qquad \int x(hg) dg = \int x(g) dg,$$

$$4^{\circ} \qquad \int 1 dg = 1.$$

 $\int_{G} x(g)dg \text{ satisfies } 1^{\circ} \text{ by (1) and the linearity of } \tau. \text{ By (3) and (c),}$ we have $\int_{G} x(g)dg \ge 0 \text{ for } x \ge 0, \text{ which shows } 2^{\circ}. \text{ By (4),}$

$$\int_{G} x(hg) dg = \tau(T_{x_h}) = \tau(U_h^* T_x U_h) = \tau(T_x) = \int_{G} x(g) dg,$$

which proves 3'. Finally by (2),

[Vol. 40,

476

Construction of Finite Factors. I

$$\int_{G} 1 \, dg = \tau(T_1) = \tau(1) = 1,$$

whence 4° is proved. Therefore G is amenable.

Since we have proved in [1; Theorem 5] that the hyperfinite factor has the property Q, Theorem 1 implies the following

COROLLARY. If the crossed product $G \otimes \mathcal{A}$ of a von Neumann algebra of finite type by an enumerable group G of outer automorphisms of \mathcal{A} is a continuous hyperfinite factor, then G is an amenable group.

4. As a consequence of Theorem 1, we shall show at first the following theorem which may be considered as a reproduction of [4; Theorem 4]:

THEOREM 2. If \mathcal{A} is the continuous hyperfinite factor, then there exists a group G of outer automorphisms of \mathcal{A} such that the crossed product $G \otimes \mathcal{A}$ is not hyperfinite.

Proof. Since the free group Φ having two generators is isomorphically representable by the group of outer automorphisms of the hyperfinite factor \mathcal{A} by [4; II, Theorem] and since Φ is not amenable, the theorem follows at once by Corollary.

Since Theorem 1 is still true if we replace the property Q by the property P of Schwartz [6], we can reproduce a proof by the above argument that there exists a continuous finite factor without the property P.

In the next place, we shall consider the example of factors due to Murray and von Neumann [5]:

THEOREM 3. Let G be an enumerable ergodic m-group in a measure space (S, μ) . If the factor constructed by G and (S, μ) by the method due to Murray and von Neumann is a continuous hyper-finite factor, then G is amenable.

Proof. Let \mathcal{A} be the multiplication algebra of the measure space (S, μ) . Then G induces a group G_1 of outer automorphisms of \mathcal{A} which is isomorphic to G and preserves the integral by μ . Turumaru [8] observed that the crossed product $G_1 \otimes \mathcal{A}$ is nothing but the factor constructed by Murray and von Neumann. Hence the theorem follows from Corollary.

References

- H. Choda and M. Echigo: A new algebraical property of certain von Neumann algebras. Proc. Japan Acad., 39, 651-655 (1963).
- [2] J. Dixmier: Les Algebres d'Opérateurs dans l'Espace Hilbertien. Gauthier-Villars, Paris (1957).
- [3] M. Nakamura and Z. Takeda: On some elementary properties of the crossed product of von Neumann algebras. Proc. Japan Acad., 34, 489-494 (1958).

- [4] M. Nakamura and Z. Takeda: On certain examples of the crossed product of finite factors, I-II. Proc. Japan Acad., 34, 495-499, 500-502 (1958).
- [5] F. Murray and J. von Neumann: Rings of operators. Ann. of Math., 37, 116-229 (1936).
- [6] J. Schwartz: Two finite, non-hyperifinite, non-isomorphic factors. Comm. Pure and Appl. Math., 16, 19-26 (1963).
- [7] N. Suzuki: Crossed product of rings of operators. Tohoku Math. J., 11, 113-124 (1959).
- [8] T. Turumaru: Crossed product of operator algebra. Tohoku Math. J., 10, 355-365 (1958).
- [9] H. Umegaki: Positive definite functions and direct product of Hilbert spaces. Tohoku Math. J., 7, 206-211 (1955).