660 [Vol. 40,

141. A Remark on Quasiideals of Regular Ring

By Jiang Luh

Indiana State College, U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1964)

Let A be a ring. A is said to be regular (strongly regular) if for every element $a \in A$ there exists an element $x \in A$ such that axa = a $(a = x^2a)$. A subring Q of A is called a quasiideal of A if $AQ \cap QA \subseteq Q$. The concepts of a regular semigroup and quasiideal of a semigroup are described analogously. It is easy to see that a subring Q of a ring A is a quasiideal of A when and only when Q is a quasiideal of the multiplicative semigroup A. Various necessary and sufficient conditions for the regularity of rings are to be found in the literature (see [1], [3]). In this note we establish yet another such condition which does not appear to have been stated previously.

S. Lajos [2] has recently proved that the product of two quasiideals of a regular ring is a quasiideal. Thus, the collection of quasiideals of a regular ring forms a multiplicative semigroup. Considering this connection of regular ring with its quasiideals, we shall prove the following

Theorem. Let A be a ring and let $\mathfrak A$ be the collection of all quasiideals of A. Then A is regular if and only if $\mathfrak A$ is a regular multiplicative semigroup.

Before proving this theorem we shall recall the following result. Lemma. A ring A is regular if and only if, for every quasi-ideal Q of A, QAQ=Q (see [3]).

Proof of the theorem. Necessity. Assume that A is a regular ring and that $Q \in \mathfrak{A}$. Then, by the lemma, Q = QAQ, and \mathfrak{A} is therefore a regular semigroup since $A \in \mathfrak{A}$.

Sufficiency. Suppose that $\mathfrak A$ is a regular semigroup. Let $Q \in \mathfrak A$. By virtue of the lemma we need only to show that QAQ=Q. In fact, by the regularity of $\mathfrak A$ there exists $P \in \mathfrak A$ such that Q=QPQ and hence $Q\subseteq QAQ$. But, on the other hand, $QAQ\subseteq QA\cap AQ\subseteq Q$. Thus QAQ=Q and the theorem follows.

It is known that a ring A is strongly regular if and only if every quasiideal of A is idempotent (see [1]). An immediate consequence is the following

Corollary. Let A be a ring and let $\mathfrak A$ be the collection of all quasiideals of A. Then A is strongly regular if and only if $\mathfrak A$ is an idempotent multiplicative semigroup.

Finally, it should be noted that by similar arguments we can

show that a semigroup S is regular (strongly regular) if and only if the collection of all quasiideals of S forms a regular (idempotent) semigroup.

References

- [1] L. Kovács: A note on regular rings. Publ. Math. Debrecen, 4, 465-468 (1956).
- [2] S. Lajos: On quasiideals of regular ring. Proc. Japan Acad., 38, 210-211 (1962).
- [3] J. Luh: A characterization of regular rings. Proc. Japan Acad., 39, 741-742 (1963).