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136. On Quasi-Montel Spaces

By Kazuo KERA

(Comm. by Kinjir6 KUNUGI, M.J.A., Oct. 12, 1964)

1. In the theory of topological linear spaces, many properties
of Montel spaces have been studied. In this paper, we shall investi-
gate the properties of the spaces having weaker condition than Montel
spaces, called “quasi-Montel spaces”. Throughout this paper, termi-
nology and notation are the same as in [1], if nothing otherwise is
mentioned. For example, a Montel space means a locally convex
separative topological linear space in which every bounded subset is
relatively compact, and which is not necessarily tonnelé.

Definition. We say that a locally convex separative topological
linear space E is a quasi-Montel space, if and only if each convex
weakly compact (o(E, E')-compact) subset is compact for the original
topology of E.

Obviously, each Montel space is a quasi-Montel space.

Theorem 1. In order that a locally convex separative topological
linear space E is a Montel space, it is mecessary and sufficient that
E is a semi-reflexive® quasi-Montel space.

Proof. Necessity is trivial.

Sufficiency: For any closed bounded subset A of E, there is a
convex closed bounded subset B containing A. From the semi-reflex-
ivity, B is a weakly compact subset. So B is compact, because E is
a quasi-Montel space. Therefore A is also compact.

Theorem 2.

(a) A subspace of a quasi-Montel space is a quasi-Montel space.

(b) A product space of quasi-Montel spaces is a quasi-Montel

space.

(¢) A direct sum of quasi-Montel spaces is a quasi-Montel

space.

(d) A strict inductive limit of countable many quasi-Montel

spaces is a quasi-Montel space.

Proof. (a) Let E be a quasi-Montel space and F be a sub-
space of E. Each convex weakly compact (¢(F, F')-compact) subset A
of F' is convex weakly compact (¢(E, E')-compact) in E. As E is a
quasi-Montel space, A is a compact subset of E. Therefore A is also
compact in F.

1) We say that a topological linear space E is semi-reflexive, if each continuous
linear functional on E’ is continuous for ¢(E’, E)-topology.
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(b) Let A be a convex weakly compact subset of the product
space E=]] E.. (Each E, is a quasi-Montel space.) As each projec-

tion A, of A on E, is a convex weakly compact (¢(E,, E’)-compact)
set in E, A, is compact for the original topology of FE,. Hence
I1 A, is compact. And A is closed in [] 4., so 4 is a compact sub-

set of K.
(c¢) Let A be a convex weakly compact subset of the direct
sum E=® E, (Each E, is a quasi-Montel space.) As A4 is bounded,

there exist ay, ay -+, a, such that AC@® E,. By the same steps as
i=1

in the latter half of (b), it follows that A is a compact subset of E.

(d) Let A be a convex weakly compact subset of the strict
inductive limit E of the sequence {E,}. (Each E; is a quasi-Montel
space.) Then A is contained in some E,, in which A is compact; and
the conclusion follows.

2. Let (E, F) be a separative dual system of linear spaces E,
F. Consider a locally convex separative topology = on E whose dual
space is F. Then according to the theorem of Mackey-Arens, we
have

o(E, F)<c<7(E, F) on E?
Now, we consider two topologies 7z, 7, on E such that
o(E, F)<r, <z, <7(E, F)
and suppose that z, is a quasi-Montel topology on E. Then, obviously,
7, is also a quasi-Montel topology. As weak topology o(E, F) is a
quasi-Montel topology, we have a problem if there is a maximum
one (stronger than the others) among quasi-Montel topologies r, such
that
o(E, F)<r,<t(E, F).

Lemma. Let X be a set which is considered as topological spaces
X, with various topologies z,. Suppose there is a separative topology
t which is weaker than all z,. If a subset A of X is compact for
all =, then A is also compact for the weakest topology z, among
those which are stronger (in the semse >) than all c,.

Proof. We denote by 4 the diagonal subset of I:IXX. Then X,

is homeomorphic to 4, so 4, is homeomorphic to 4[] 4,. Accord-
P

ing to Tychonoff’s theorem, J] A, is compact in [[X,. The ex-
2 2

istence of the above mentioned topology r implies that 4 is closed in
1:[X}. Hence 4NI] A, is compact and so is A,.
2

2) Here, for two topologies 7,0 on E, d<r means that the topology 7 is stronger
than ¢ or coincides with o on E.
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Theorem 3. Consider a separative dual system (E, F') of linear
spaces. Then there exists a maximum quasi-Montel topology in the
system T of all quasi-Montel topologies r, on E such that

o(E, )<, <z(E, F).

Proof. The system of ¢(E, F')-compact convex sets is the same
for any two topologies r;,, 7. in T. As each topology z, in T is a
quasi-Montel topology, any weakly compact convex set A is compact
for all z, in 7. Because the weak topology o(E, F') is separative,
T has a maximum topology 7, and A is compact for z,., This topo-
logy is the desired one.

3. Next, we shall study the properties of quasi-Montel spaces
by considering their dual spaces.

Theorem 4. In order that a locally convex separative topological
linear space E is a quasi-Montel space, it is necessary and sufficient
that the topology of E is the topology of S-convergence for some
Jamily S of (&', E)-compact sets in E’.

Proof. (1) We suppose that E is a quasi-Montel space. Let
B be an equi-continuous subset of E’. The topology of uniform con-
vergence on each precompact set of E coincides with ¢(&’, E) on B.
As FE is a quasi-Montel space, «(E’, E) coincides with ¢(E’, E) on B.
Then B is a relative 7(&’, E)-compact set.

(2) Conversely, we suppose that the topology of E is the topo-
logy of ©-convergence for some family & of z(E’, E)-compact sets
in E’. Let A be a convex weakly compact subset of K, then A4 is
an equi-continuous subset of E as dual space of (E’). .z, 5. Therefore,
on A, the topology of S-convergence coincides with (&, E'). So A
is compact for the original topology of E.

Remark. In Theorem 4, we can assume without loss of gener-
ality that the sets in & are convex.

Corollary 1. The maximum quasi-Montel topology on E is the
one of S-convergence for the family & of all (&', E)-compact con-
vex subsets in E’.

Corollary 2. We suppose that the topology of E 1is Mackey’s
topology (K, E') and E is a quasi-Montel space. Then E’ is a quasi-
Montel space for Mackey’s topology =(E', E).

Corollary 8. If the maximum quasi-Montel topology on E coin-
cides with the weak topology o(E, E"), each convex t(E', E)-compact
subset of E' is contained im a linear subspace of finite dimensions.

4. In a locally convex separative topological linear space over
the real field, each continuous linear funectional on £ has the maxi-
mum value on a compact set. The converse is not always true. We
shall consider the converse in a quasi-Montel space.

Lemma. Let A be a weakly closed subset of a locally convex
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separative topological linear space E over the real field. If each
continuous linear functional f on E has the maximum (and so the
mintmum) value on A, A is weakly compact in E.

Proof. We denote by a, and b, the minimum value and the
maximum value of f on A respectively. Then the set A with the
weak topology is topologically imbedded into the product of closed
intervals 1;[ [a;b,], and the image is closed. Hence A is compact

for the weak topology.

According to this lemma, it is easy to prove the following

Theorem 5. Let E be a locally convex separative topological
linear space over the real field. Then E is a quasi-Montel space,
if and only if each convex closed subset of E on which any element
of E’ has the maximum value, is compact.

5. Here we shall mention some examples and counter-examples
on quasi-Montel spaces.

(A) The Banach space I' of all absolutely summable sequences,
is a quasi-Montel space,” but not a Montel space.

(B) (1) The Banach space I”? (1<p< ) of p-th summable se-
quences, is reflexive, but not a Montel space. It is not a quasi-Montel
space on account of Theorem 1.

(2) We consider the Banach space ¢, of all sequence {a,} such
that lim a,=0.

We take the sequence {X,|X,=(0un)m=1,...} in ¢. As the dual
space of ¢, is 1!, {X,} converges to 0 for the weak topology. But
{X,} does not converge in ¢,. Then ¢, is not a quasi-Montel space,
because the convex closure of {X,} has the same property.

(8) We consider the Banach space I~ of all bounded sequences,
and the Banach space ¢ of all convergent sequences. Both contain
¢, as their subspace. So they are not quasi-Montel spaces by Theorem
2, (a).

Remark 1. The spaces ¢, ¢, [?(1<p< o) are separable Banach
spaces. So each of them is topologically isomorphic to some quotient
space of I1.* The fact that I' is a quasi-Montel space, but they are
not quasi-Montel spaces, shows that the quotient space of a quasi-
Montel space is not always a quasi-Montel space.

Remark 2. As the dual space of I' is I*, the dual space of a
quasi-Montel space is not always a quasi-Montel space.

Remark 8. The usual topology of [* is Mackey’s topology and
12 is not a quasi-Montel space for this topology. The maximum
quasi-Montel topology of [* is the topology of the uniform conver-

3) [2] p. 284, (3).
4) [2] p. 283, (D).
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gence on each convex compact set of (I%)'=I2
Remark 4. The usual topology of I' is Mackey’s topology and
it is the maximum quasi-Montel topology.
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