15. Some Remarks on Von Neumann Algebras with an Algebraical Property

By Hisashi Choda and Marie Echigo
Department of Mathematics, Osaka Gakugei Daigaku
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1965)

Schwartz [8] established that there exists a pair of nonisomorphic, non-hyperfinite finite factors, so that he introduced the property P which is spatial one. In [2], we introduced a purely algebraical property, the property Q, and showed that the results of Schwartz were followed by the property Q. In [3], we proved that the crossed product $G \otimes \mathcal{A}$ of the finite von Neumann algebra \mathcal{A} by a group G of outer automorphisms of \mathcal{A} has the property Q only if G is amenable, and that the factor constructed by an enumerable ergodic m-group G on a measure space by the method due to Murray-von Neumann [4] is a continuous hyperfinite factor only if G is amenable. We obtained also in [3] a sufficient condition for the crossed product to have the property P.

In this paper, we shall report some further results on von Neumann algebras with the property Q. We shall publish the details in the Memoir of Osaka Gakugei University, Sect. B, No. 13 (1964).

In the below, we shall use the terminology of [3] without further explanations.

In the first place, a sufficient condition for the crossed product to have the property Q will be given in the following theorem:

Theorem 1. Let \mathcal{A} be a von Neumann algebra with a finite faithful normal trace φ and G an amenable group of outer automorphisms of \mathcal{A} such that

$$
\varphi\left(A^{g}\right)=\varphi(A) \quad \text { for } g \in G \text { and } A \in \mathcal{A}
$$

If \mathcal{A} has an amenable generator \mathcal{G} satisfying the following conditions:
i) $\quad G^{a} \subset G \quad$ for any $g \in G$, and
ii) $\quad \int f(U) d U^{g}=\int f(U) d U \quad$ for $g \in G$ and $f \in L^{\infty}(\mathcal{G})$,
then the crossed product $G \otimes \mathcal{A}$ has the property Q.
Let Φ be the free group with two generators, then there exists a group G of outer automorphisms of the hyperfinite continuous factor \mathcal{A} which is isomorphic to Φ, cf.[6]. For an infinite dimensional Hilbert space \mathcal{K}, let $\mathscr{B}=\mathcal{L}(\mathcal{K})$, then $(G \otimes \mathcal{A}) \otimes \mathscr{B}$ is a factor of type II_{∞} without the property Q. Hence, we have the following

Theorem 2. There is a factor of type $I I_{\infty}$ which has not the property Q.

In the next place, we shall report the following theorem with respect to the incomplete infinite direct product of von Neumann algebras defined in [1] and [7].

THEOREM 3. If each von Neumann algebra \mathcal{A}_{i} acting on \mathscr{H}_{i} has the property Q for every $i \in I$, then the \mathbb{C}-adic incomplete infinite direct product $\Pi \otimes_{i \in I}{ }^{\mathscr{E}} \mathcal{A}_{i}$ has the property Q for any equivalent class \mathfrak{E}.

Bures [1] proved that an incomplete infinite direct product of von Neumann algebras becomes a factor of type I, type II and type III for an appropriate equivalence class, respectively. Hence, by Theorem 3, there exists a factor of type I, type II and type III with the property Q respectively. Schwartz [9] showed that there exists a factor of type III which has not the property P. Then, there exists a factor of type III without the property Q, by Theorem 1 in [2]. Therefore, by the results of [2] and the above, we have the following.

Theorem 4. i) The factors of type I have the property Q. ii) In the case of type $I I_{1}$, type $I I_{\infty}$ and type $I I I$, there exists a factor which has the property Q and there exists a factor which has not the property Q.

References

[1] D.J.C. Bures: Certain factors constructed as infinite tensor product. Comp. Math., 15, 169-191 (1963).
[2] H. Choda and M. Echigo: A new algebraical property of certain von Neumann algebras. Proc. Japan Acad., 39, 651-655 (1963).
[3] -: A remark on construction of finite factors, I-II. Proc. Japan Acad., 40, 474-478, 479-481 (1964).
[4] F. Murray and J. von Neumann: Rings of operators. Ann. of Math., 37, 116-229 (1936).
[5] M. Nakamura and Z. Takeda: On some elementary properties of the crossed product of von Neumann algebras. Proc. Japan Acad., 34, 489494 (1958).
[6] - : On certain examples of the crossed product of finite factors, I-II. Proc. Japan Acad., 34, 495-499, 500-502, (1958).
[7] J. von Neumann: On infinite direct products. Comp. Math., 6, 1-77 (1938).
[8] J. Schwartz: Two finite, non-hyperfinite, non-isomorphic factors. Comm. Pure and Appl. Math., 16, 19-26 (1963).
[9] -: Non isomorphism of a pair of factors of type III. Comm. Pure and Appl. Math., 16, 111-120 (1963).

