(3)

1. Positive Pseudo-resolvents and Potentials

By Kôsaku Yosida

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Jan. 12, 1965)

1. Introduction. Let Ω be a set, and denote by X a Banach space of real-valued bounded functions f(x) defined on Ω and normed by $||f|| = \sup_{x \in \overline{\Omega}} |f(x)|$. We assume that X is closed with respect to the lattice operations $(f \wedge g)(x) = \min(f(x), g(x))$ and $(f \vee g)(x) = \max(f(x), g(x))$. For any linear subspace Y of X, we shall denote by Y^+ the totality of functions $f \in Y$ which are ≥ 0 on Ω , in symbol $f \geq 0$. We also use the notation $f^+ = f \vee 0$ and $f^- = (-f) \vee 0$.

We denote by L(X, X) the totality of continuous linear operators defined on X into X. A family $\{J_{\lambda}; \lambda > 0\}$ of operators $\in L(X, X)$ is called a *pseudo-resolvent* if it satisfies the *resolvent equation* (1) $J_{\lambda}-J_{\mu}=(\mu-\lambda)J_{\lambda}J_{\mu}.$

Suggested by the case of the resolvent $J_{\lambda} = (\lambda I - A)^{-1}$ of the infinitesimal generator A of a semi-group $\{T_t; t \ge 0\}$ of operators $\in L(X, X)$ of class $(C_0)^{1}$ mapping X^+ into X^+ , we shall assume conditions:

(2) J_{λ} is positive, in symbol $J_{\lambda} \ge 0$, that is, $f \ge 0$ implies $J_{\lambda} f \ge 0$ for all $\lambda > 0$.

$$\|\lambda J_{\lambda}\| {\leq} 1 \quad ext{for all } \lambda {>} 0.$$

Then, an element $f \in X$ is called *superharmonic* (or *subharmonic*) if $\lambda J_{\lambda} f \leq f$ (or $\lambda J_{\lambda} f \geq f$) for all $\lambda > 0$, and an element $f \in X$ is called a *potential* if there exists a $g \in X$ such that $f = s-\lim_{\lambda \downarrow 0} J_{\lambda}g$, where s-lim denotes the strong limit in X, i.e., uniform limit on Ω .

We shall be concerned with the *potential operator* V defined by (4) $Vf = s - \lim_{\lambda \downarrow 0} J_{\lambda} f$ (when $s - \lim_{\lambda \downarrow 0} J_{\lambda} f^+$ and $s - \lim_{\lambda \downarrow 0} J_{\lambda} f^-$ both exist).

Our main results are stated in the following two theorems.

Theorem 1. Let J_{λ} satisfy (1) and (2). Then $V \ge 0$ and we have:

(5) Let $f \in X^+$, $g \in X^+$ and $\lambda > 0$, and define $V_{\lambda} = V + \lambda^{-1}I$. If $(V_{\lambda}f)(x) \leq (Vg)(x)$ on the support (f), we must have $V_{\lambda}f \leq Vg$. (the principle of majoration).

Theorem 2. Let J_{λ} satisfy (1), (2) and (3). If the range R(V) of the potential operator V is dense in X, then $R(V_{\lambda})$ is also dense in X and the null space $N(V) = \{f; Vf=0\}$ consists of the zero vector only. Moreover, J_{λ} is the resolvent of a linear operator A with dense domain D(A) defined through the Poisson equation AVf=-f.

Remark. Two special cases of X are important for concrete

¹⁾ See, e.g., K. Yosida: Functional Analysis, Springer, to appear soon.

application. The first case: Ω is a locally compact Hausdorff space and X is the totality of real-valued continuous functions defined on Ω which tend to zero at infinity; X is the closure with respect to the norm $||f|| = \sup_{x \in \Omega} |f(x)|$ of the space $C_0(\Omega)$ of continuous functions with compact support defined on Ω . The second case: Ω is a σ -additive family of subsets of a set, and X is the Banach space of σ -additive measures defined on Ω and normed by the total variation of the measure. The first case was discussed by G. A. Hunt² in the view to characterize the operator \tilde{V} defined through

$$(4)' \qquad (\widetilde{V}f)(x) = \int_0^\infty (T_t f)(x) dt,$$

where $\{T_i; t \ge 0\}$ is the semi-group associated with a Markov process in a locally compact space Ω . In the first case, we can prove, under condition(5), an analogue of Hunt's research:

Theorem 3. If $V \ge 0$ and if R(V) is dense in X, we have:

 $(5)_1$ Let $f \in C_0(\Omega)^+$ and $g \in X^+$, and let $(Vf)(x) \leq (Vg)(x)$ on the support (f). Then $Vf \leq Vg$.

If furthermore, $V(C_0(\Omega)^+)$ is dense in X^+ , then we obtain:

 $(5)_2$ Let $f \in C_0(\Omega)$ and let $(Vf)(x_0) = \max(Vf)(x)$. Then $f(x_0) \ge 0$.

Theorem 4. Let V be a closed linear operator whose domain D(V) and range R(V) both belong to $X=C_0(\Omega)^{\alpha}$ in such a way that V satisfies (5) and further conditions:

$$(6) V \ge 0,$$

(7) Vf is defined if and only if Vf^+ and Vf^- are both defined.

(8) $N(V) = \{0\}.$

 $(9) C_0(\Omega) \subseteq D(V).$

(10) $V(C_0(\Omega)^+)$ is dense in X^+ and $V_{\lambda}(C_0(\Omega))$ is dense in X for $\lambda > 0$. Then, for the operator A defined through the Poisson equation AVf = -f and for $\lambda > 0$, the resolvent $J_{\lambda} = (\lambda I - A)^{-1}$ exists as an operator $\in L(X, X)$ such that (1), (2), (3) and (4) hold.

2. Proof of the theorems. We shall rely upon a lemma which is a special case of the so-called *Abelian ergodic theorem.*³⁾

Lemma. Under condition (1), we have (11) L I - I L

$$J_{\lambda}J_{\mu} = J_{\mu}J_{\lambda}$$

Under conditions (1) and (3), we have:

(12) $R(J_{\lambda})$ is independent of λ , and its closure $R(J_{\lambda})^{*}$ coincides with $\{f; s-\lim_{\lambda \to \infty} \lambda J_{\lambda}f = f\}.$

²⁾ Markoff processes and potentials, I, II and III, Illinois J. of Math., 1, 44-93, 316-469 (1957) and 2, 151-213 (1958). Further researches are given, e.g., in Séminaire du Potentiels, dirigés par M. Brelot, G. Choquet et J. Deny, Fac. Sci. Paris (1950-).

³⁾ K. Yosida: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37, 422-423 (1961). Cf. E. Hille-R. S. Phillips, Functional Analysis and Semi-groups, Providence (1957).

No. 1]

(12)' $R(I-\lambda J_{\lambda})$ is independent of λ and its closure $R(I-\lambda J_{\lambda})^{a}$ coincides with $\{f; s-\lim \lambda J_{\lambda}f=0\}$.

Proof. See the reference cited in the footnotes 1) and 3).

(13) Proof of Theorem 1. The operator V defined through (4) satisfies (13) $Vf = \lambda J_{\lambda}Vf + J_{\lambda}f = V\lambda J_{\lambda}f + J_{\lambda}f$ for $f \in D(V)$,

because of (1), (4) and (11). Thus, if $f \ge 0$ belongs to the domain D(V), then Vf is superharmonic by $J_{\lambda}f \ge 0$.

Next we show that, if $f \in X^+$ be such that $\mu J_{\mu} f \leq f$ for all μ with $0 < \mu \leq \lambda$, then

(14)
$$\lim_{\mu \to 0} (J_{\mu}(\lambda I - \lambda^2 J_{\lambda})f)(x) = (\lambda J_{\lambda}f)(x) - f_{\hbar}(x), \text{ where } f_{\hbar}(x) = \lim_{\mu \to 0} (\mu J_{\mu}f)(x)^4.$$

To prove this, we first observe that $\lambda(I - \lambda J_{\lambda})f$ is ≥ 0 . We have, by (1),

$$J_{\mu}(\lambda f - \lambda^2 J_{\lambda} f) = \lambda J_{\mu} f - \frac{\lambda^2}{\lambda - \mu} (J_{\mu} - J_{\lambda}) f = \frac{-\lambda}{\lambda - \mu} \mu J_{\mu} f + \frac{\lambda^2}{\lambda - \mu} J_{\lambda} f.$$

We also have, by (1),

 $(I+(\mu-\lambda)J_{\lambda})(I-\mu J_{\mu})f=(I-\lambda J_{\lambda})f.$

Hence, if $0 < \mu \leq \lambda$, the condition $\mu J_{\mu} f \leq f$ (for $0 < \mu \leq \lambda$) implies that $0 \leq \mu J_{\mu} f \leq \lambda J_{\lambda} f$. Thus $\lim_{\mu \neq \lambda} (\mu J_{\mu} f)(x) = f_{h}(x)$ exists and so we obtain (14).

We are now able to prove (5). Put $v(x) = \min((V_{\lambda}f)(x), (Vg)(x))$. Then $v \ge 0$ by $f \ge 0, g \ge 0$ and $V \ge 0$, and we have (15) $\mu J_{\mu}v \le v$ for $0 < \mu \le \lambda$.

We have only to show that $\mu J_{\mu} V_{\lambda} f \leq V_{\lambda} f$. But we obtain

$$\mu J_{\mu} V_{\lambda} f = \mu J_{\mu} V f + \frac{\mu}{\lambda} J_{\mu} f = \mu J_{\mu} V f + J_{\mu} f + \left(\frac{\mu}{\lambda} - 1\right) J_{\mu} f$$
$$= V f + \left(\frac{\mu}{\lambda} - 1\right) J_{\mu} f \leq V f \leq V_{\lambda} f \leq V_{\lambda} f$$

Thus $w = \lambda (I - \lambda J_{\lambda}) v \ge 0$ and we have, by (14), (16) $\lim_{\mu \downarrow 0} (J_{\mu}w)(x) = (\lambda J_{\lambda}v)(x) - v_{h}(x)$, where $v_{h}(x) = \lim_{\mu \downarrow 0} (\mu J_{\mu}v)(x) \ge 0$. Hence, by (13) and the positivity of J_{μ} , we obtain (17) $\lim_{\mu \downarrow 0} (J_{\mu}w)(x) \le (\lambda J_{\lambda}v)(x) = v(x) - \lambda^{-1}w(x)$ $\le (\lambda J_{\lambda}V_{\lambda}f)(x) = (Vf)(x)$

$$= (V_{\lambda}f)(x) - \lambda^{-1}f(x).$$

We have $(V_{\lambda}f)(x) = v(x)$ on the support (f) by hypothesis. Hence, by (17), $f(x) \leq w(x)$ on the support (f), and so, by $f \geq 0$ and $w \geq 0$, we must have $f \leq w$. Therefore, by (17) and the positivity of J_{μ} , we obtain $(V_{\lambda}f)(x) \leq \lim_{\mu \downarrow 0} (J_{\mu}w)(x) + \lambda^{-1}w(x) \leq v(x) \leq (Vg)(x)$, that is, $V_{\lambda}f \leq Vg$.

Proof of Theorem 2. By (13), we see that $R(V)^a = X$ implies $R(V_{\lambda})^a = X$ and $R(J_{\lambda})^a = X$. $R(J_{\lambda})^a = X$ implies, by (12), that $N(J_{\lambda}) = X$

⁴⁾ Originally, the author tacitly concluded that s-lim $\lambda J_{\lambda} f = f_{h}$ exists. This was pointed out by Mr. D. Fujiwara.

K. Yosida

{0} which, in turn, implies the existence of the inverse J_{λ}^{-1} . By (1), it is easy to see that $(\lambda I - J_{\lambda}^{-1})$ is independent of λ so that $J_{\lambda} = (\lambda I - A)^{-1}$ where $A = \lambda I - J_{\lambda}^{-1}$. Moreover, $D(A) = R(J_{\lambda}) \supseteq R(V)$ is dense in X. By (13), Vf = 0 implies $J_{\lambda}f = 0$ so that $N(V) = \{0\}$ if $R(V)^{a} = X$. Finally, we have, by (13) and $J_{\lambda} = (\lambda I - A)^{-1}$,

 $(\lambda I - A)Vf = \lambda Vf + f$, that is, AVf = -f.

Proof of Theorem 3. We first prove $(5)_1$. Since R(V) is dense in X, there exists an $h \ge 0$ such that $f(x) \le (Vh)(x)$ on the support (f) which is compact by hypothesis. For any $\varepsilon > 0$, take $\lambda > 0$ such that $\lambda^{-1} < \varepsilon$. Then $(V_{\lambda}f)(x) \le (Vg)(x) + \lambda^{-1}f(x) \le (V(g + \varepsilon h))(x)$ on the support (f). Hence, by (5), $Vf \le V_{\lambda}f \le V(g + \varepsilon h)$. Letting $\varepsilon \downarrow 0$, we obtain $Vf \le Vg$.

Proof of (5)₂. Since $Vf \in X = C_0(\Omega)^a$, we must have $(Vf)(x_0) \ge 0$. Let us tentatively assume that $(Vf)(x_0) > 0$. Then we can show that $f(y) \ge 0$ at some point $y \in E = \{x; (Vf)(x_0) = (Vf)(x)\}$. Since $V \ge 0$, the condition $(Vf)(x_0) > 0$ implies that f^+ is not equal to zero. For any point $y \in E \cap \text{support}(f^+)$, we have surely $f(y) \ge 0$. If $E \cap \text{support}(f^+)$ is void, then there exists an $\varepsilon > 0$ such that $(Vf)(x_0) > \varepsilon$ and that $(Vf)(x) \leq (Vf)(x_0) - \varepsilon$ on the support (f^+) . Since $V(C_0(\Omega)^+)$ is dense in X⁺ by hypothesis, there exists an $h \ge 0$ such that $(Vh)(x_0) =$ $(Vf)(x_0) - \varepsilon$ and $(Vh)(x) \ge (Vf)(x_0) - \varepsilon$ on the support (f^+) . Hence $(Vf^{+})(x) \leq (Vf^{-})(x) + (Vh)(x)$ on the support (f^{+}) , and so, by $(5)_{1}$, we must have $Vf \leq Vh$. Thus we have a contradiction $(Vf)(x_0) \leq$ $(Vh)(x_0) = (Vf)(x_0) - \varepsilon$. We now turn to the general case $(Vf)(x_0) \ge 0$, and take any compact set \hat{E} of Ω containing x_0 as an interior point. Since $V(C_0(\Omega)^+)$ is dense in X^+ , there exists a $g \in C_0(\Omega)^+$ such that $(Vg)(x_0) > \max(Vg)(x)$. Then, for any $\varepsilon > 0$, the function $(V(f + \varepsilon g))(x)$ $x \in \Omega - \hat{E}$ takes its positive maximum at a point $\in \hat{E}$ and not at points outside \hat{E} . Hence, as proved above, there must exist at least one point $y \in \hat{E}$ such that $f(y) + \varepsilon g(y) \ge 0$. Therefore, we obtain $f(x_0) \ge 0$ by letting $\varepsilon \downarrow 0.$

Proof of Theorem 4. By (8), we can define the operator A through AVf = -f. Thus

(18) $(\lambda I - A) V f = \lambda V f + f.$

We first prove that the condition $V_{\lambda}f=0$ with $\lambda>0$ implies that f=0. For, then $(V_{\lambda}f^+)(x) \leq (Vf^-)(x)$ on the support (f^+) and so $Vf^+ \leq V_{\lambda}f^+ \leq Vf^-$ by (5). Similarly we obtain $Vf^+ \geq Vf^-$ and hence Vf=0 so that f=0 by (8).

Therefore the inverse $J_{\lambda} = (\lambda I - A)^{-1}$ exists as an operator which maps $(\lambda V f + f)$ onto V f. We can prove that (19) $J_{\lambda} = (\lambda I - A)^{-1}$ is positive.

Let $h \ge 0$ be $\in D(J_{\lambda})$. Then $J_{\lambda}h = g = Vf$ with $f \in D(V)$ and

Positive Pseudo-resolvents and Potentials

(20)
$$h = (\lambda I - A)J_{\lambda}h = \lambda g - Ag = \lambda Vf + f.$$

No. 17

Since $h \ge 0$, we have $(\lambda V f^+)(x) \ge (\lambda V f^{-1})(x) + f^-(x)$ on the support (f^-) and so, by (5), $\lambda V f^+ \ge \lambda V f^- + f^-$, that is, $J_{\lambda}h = V f \ge \lambda^{-1} f^- \ge 0$.

Since A is a closed linear operator with V, we see that $D(J_{\lambda})^{a} \supseteq V_{\lambda}(C_{0}(\Omega))^{a} = X$ implies, by $V \ge 0$, that $\lambda > 0$ is in the resolvent set of A and $J_{\lambda} = (\lambda I - A)^{-1} \in L(X, X)$.

We next show that (3) is true. Let $h \in V_{\lambda}(C_0(\Omega))$. Then, by (20), we can show that $\min_{x \in \Omega} h(x) \leq (\lambda V f)(x) \leq \max_{x \in \Omega} h(x)$. In fact, let $(Vf)(x_0) = \max_{x \in \Omega} (Vf)(x)$. Then, by (5)₂, we have $f(x_0) \geq 0$ so that $(\lambda V f)(x) \leq h(x_0) \leq \max_{x \in \Omega} h(x)$. Similarly we obtain $(\lambda V f)(x) \geq \min_{x \in \Omega} h(x)$. Thus we have proved (3).

We finally prove that $Vf = s - \lim_{\mu \downarrow 0} J_{\mu} f$ for $f \in D(V)$. We have, by (18), (21) $Vf = \lambda J_{\lambda} V f + J_{\lambda} f$. We also have, by $J_{\lambda} = (\lambda I - A)^{-1}$, (22)

(22) $(I - \lambda J_{\lambda})f = -J_{\lambda}Af$ for $f \in D(A)$.

On the other hand, the range $R(A) = D(V) \supseteq C_0(\Omega)$ is dense in X and the range $R(J_{\lambda}) = D(A) = R(V)$ is dense in X. Thus we see that (22) implies that $R(I - \lambda J_{\lambda})^a = X$. Hence, by (12)', s-lim $\lambda J_{\lambda} f = 0$ for every $f \in X$. Therefore, by (21), we obtain Vf = s-lim $J_{\lambda}^{\lambda \downarrow 0}$ for every $f \in D(V)$.