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25. On the Covering Dimension of Certain
Product Spaces

By Nobuo KMUA
Hokkaido Gakugei University

(Comm. by Kinjir6 Ks(, ..., Feb. 12, 1965)

In our previous paper 5, we have proved: If a produc$ space
X Y of a space X wi$h a separable me$ric space Y is coun$ably
paracompac$ and normal, $hen

dim (X Y) <_- dim X-dim Y.
Here dim X means the covering dimension of X.

In the present paper, we shall establish that if X is a normal
P-space I the above inequality holds for any metric space Y with
an open basis which is a countable union of star-finite systems, even
if Y is not separable. Here, a $opological space X is called a P-
space if for any se 2 of indices and for any family {G(cr, cr, ...,
r) e 2; i- 1, 2, } of open subsets of X such ha G(cr, --.,)
G(, ..., , +) for e12 and i-1,2, ..., $here is a family
{F(, -.., ) e 2; i= 1, 2, ...} of closed subsets of X such $ha$

(a) F(r, ..., er) G(cr, ..., er) for e 2(-1, ..., i) and (b) X=
(J F(x, -.., r) provided $ha$ X- U G(x, ..., r).
i=l =1

This concept of P-spaces which is weaker than perfect normality
and somewhat stronger than countable paracompactness was intro-
duced by K. Morita [I in his study on the normality of product
spaces, and it was established by him that X is a normal P-space
if and only if X Y is normal for any metric space Y. Thus our
assumption imposed upon X may be said to be reasonable. It is to
be noted that every separable metric space has always an open basis
which is star-finite.

Theorem 1 has been already proved by K. Morita in his unpub-
lished paper, but in this paper we shall give our proof for the sake
of completeness and for its own interest.

We are indebted to Prof. K. Morita for valuable advices and
encouragements throughout this study.

1o The following Lemma has been already presented in 5 with
more general form.

Lemma. If dim Y--O for a meric space Y, here are a
countable number of open coverings V- {V r e 2} (i- 1, 2, ...)
of Y such that (a) V is open and closed for any i and , (b)
V Va- provided o=/:f, (c) (J V is an open basis of Y.



No. 2 Covering Dimension of Certain Product Spaces 115

Theorem 1. If X is a normal P-space and Y is a metric
space such that dim Y=O, then

dim (X Y)__-< dim X.
Proof. Define, with V in Lemma,

w(a, a, --., a)= v, v... n v.
Suppose that dim X=m, and let {U, U,.-., U} be an arbitrary

finite open covering of X Y. We shall construct a refinement
{ U, ..., U} with order -<m+ 1.

Let us define, for each 1 1_< l_-< k,
1 G(a, -.-, a)= U {PIP W(a, ..., a) U, P open in X},

k

( 2 G(a, ..., a)= [J G(o, ..., ).
Then it is easy to see that
3 (a) G(o, ..., o)cG(o, ..., o, o+), G(o, ..., o)G(a, -..,
a,a+) and (b) {G(a, ...,a) W(a, ...,a)laet? (1_<___<_i); i=
1, 2,...} is an open covering of X Y.

X being a normal P-space, we can find a family {F(a, ...,
a e 9 (1=<__<i); i=1, 2,..-} of closed subsets of X such that
4 (a) F(o, o)G(a, ..., a), (b) X= [J F(a, ..., a) provided

i=1x= G(, ..., ).
In fact, setting 9= [J2, consider all sequences (, ..., a) in

tg(i-- 1, 2, ...), and let G(a, ..., a)-G(a, -, a) provided
(1-<=<i) and G(a, ..., a)-X otherwise. Then, for ae
i+1), we have G(a, ..., a)G(q, -.., , q+); and thus, by the
definition of P-spaces, there is a family {_(q, .-., a)I e t?(l_<___<i);
i-1, 2, of closed subsets of X such that (ai, "",)(," ",

a) and X= JF(a, ..-, ) provided X= JG(oi, *’., o). Let us put
i--1 i---1

F(o, ...,a)--F(a,-..,a) for such sequences (a,-..,o) as
a t? (1_<_=<i), then {F(a, ..., a)} satisfies (a) and (b) of (4).

Now, from (3)(b) and (4), it can be easily shown that
(5) {F(a, ...,a)W(a, ...,a)lcet9(l=<_=_<i);i=l, 2,...} isa
covering of X Y.

Owing to (2), (4) and the normality of X there are closed sets
F,(a, ..., c) of X such that

k

6 (a) F(c, ..., c)-- [J F,(c, ..., c), (b) F,(c, ..., c) G,(c, ..,
l=l

c) for l<-l<_:k.

By (5) and (6), {F(a, ...,c) W(c, ...,c)]aet9 (1__<__<i);
i=1, 2,.--; l<=l<__k} turns out to be a covering of X Y.

Since, for any c e/2, U(o)- G(c), X- U Fx(c) 11<: l=< k is
an open covering of X, there are two open refinements H(c)=
{H,(e), H0(c) 1__< 1--< k} and R(c)= {R,(c), R0(q) 1 =_< l__< k} such that
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(7) (a) G()
k

0 l k}_m+ 1, where G0()-X- Fx().
Then we obtain easily

8 (a) U R(q) F(), (b) the order of {R() 1 lk} m+ 1.
l=l l=l

In general, if eg we can show that there are open sets
H(q, ..., ) and R(,-.., ) such that

k

( 9 ) (a) G(, ..., )H(q, .,)R(, ., ), (b) R(, .,
k /=1

q) F(, -,) and (c) the order of {H(q, ., )] 1 1 k} m+ 1.
l=l

The proof is carried out by an induction.
For i-l, (7) and (8) are no more than (9). Now assuming the

existence of H(,--., )and R(,--., ) which satisfy (9) for
any <i (i2), we shall show the existence of them for i.

We put
k

(10) G:(, ..-, )-G(,..., )- R(, ..., _).
Nidently, U(, ..., )= (, ..., ), H(, ..., _), X-

Nx(,’", ) 1NNk} is an oen covering o X, henee there are

two oen refinements (, ..., )-{H[(, ..., ), H’(, ..., ),
,(, .,)1N N k} and R(,...,)-{RI(,..., ), R’(,..., ),
Ro(a, ..., a) 1 l k} such that

() (a) G’(a, ..., )H:(a, ..., )R;(a, ..., ),
(b) H(, ..., a,_) H:’(a, ..., ) Ri’(a, ),

k

(c) X- F(a, ..., )H0(a, ..., a,) R0(al, -.., ),
(d) the order of H(q, ..., ) m+ 1.

If we put
(12) R(q, ..., q)-R(ql, ".’, _)
we have:

(1) (a) R(a, ..., a) F(a, ..., a,),
l=l l=l

(b) the order of {R(, .-., q) 1 lk} m+ 1.
It suffices to show (13)(b). Hence assuming, for instance,

(14) R(a, ..., a,)
we shall indicate that it reduces to a contradiction.

hence it follows that

((, _) (, ..., _))(1 U

(R(,’ )...’
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where (r, -.., rx, s, ..., s, $, ..., ) ranges over all permutations
of (1, 2,..., m+ 2). Since R(, -, _) R(, .,)= by virtue
of (10) and (11)(a), we have either =0 or p=0 for non-empty
terms in (15). In the case where =0, (15) reduces to (R(, ...,)

( " R(,...,)), and... R,(, )) (.R(, ) "
this contradicts (ll)(d). If -0 (15) reduces to (R(,...,._)

(. [R" ,) N N. , ))n"" NR(, ",_))n , ,
and thus we have, by the assumption of our induction and (ll)(b),
H,,(,,..., _,) R’" R H,x(,,--.,_) n H,,(,,..., ,_,) n..- n
.-, _,) which contradicts (9)(c) for i-1. And (l$)(b) follows.

Now G(,, ..., )]R(, ..., ) is evident. Thus we have n
open sets family {H(,, -.., ) 1 lk} such that
(6) (a) G,(,, ..., ,)],(,, ..., ,) H(,, ..., ,) ]R,(,, -.., ,),
(b) {H(,, -, ) 1 l} is similar to {R,(,, .-., ,) 1 l}.

Clearly, from (13)(b) and (16)(b), it follows that
(17) the order of {H,(,, -, ) 1 1 k} m+ 1.

(lS), (16)(a) and (17) show that H,(,, ..., ,) and R,(,, ...,
satisfy (9) for i, and the induction completes.

Let us put
U,- u {R,(,, ..., ,) x W(,, ..., ,)I e 9,; i-1, 2, ...} then

,c u, and te oder o {,, 8,,..., ,} is at ost +
+ +

In fact, if n u,x, then we have {R,(,,...,)x W(,,...,
=1 =1

x) leg} for some (i,, i, ..-, i+,), where we may assume
i,i... i+; because, owing to (a) of Lemma, W(,, ..., )
$(J,, ...,J) implies J,-,, -1,2,--., for i]. On the
other hand, R,(,, ..., )mR(,, .-., _,) follows from (12). Thus
+
R R,(,,--., ,+,). By virtue of (18)(b), we arrive at a contra-
=1
diction, q.e.d.

We will define a metric space which will be needed later.
For any two sequences of elements from, a non-empty set

=(,, , ...), -($,, , .-.), , e 9, we define the metric (,
as follows.

1 if -- for i<k and -; p(, )=0. Then thep(, Z)-
set of all sequences of elements from 9 turns out to be a metric
space with p(, ) as its metric. We shall denote this space by
N(9) (see [2]). Since dimN(9)=0 ([2, p. 61]). We have

Corollary. Le$ X be o P-space; .$he

dim (Xx N(9)) dim X.
2. The following theorem is well known.
Theorem 2. Le$ X be oval 8pac ad S i8 F-sbse$;
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then dim S <__ dim X.
Theorem 3. Let X be a normal P-space and Z a metric space

with Y as its subspaee; then
dim (Xx Y)<-dim (Xx Z).

Proof. Suppose that dim (Xx Z)-- s. Let { Vx, V., ..., V} be
an arbitrary finite open covering of Xx Y and let ks+l. We can
express: V-U(Xx Y), where U is some open subset of XxZ.
Put U=U U.

4=1

Define open subsets G(o, ..., o) of X quite analogous|y to (I)
in the proof of Theorem i; then G(o, ..-, o:)x W(o, ..-, o)c U
and G(o:, ..-, o:)cG(o, ..., o, o:+), where ]4/(o, ..., o) are also
defined as before, *) but, instead of subsets of Y, they are subsets of
Z at present.

Let us put

G(, ..., )- U G(, ..., );
/=1 k

then G(o, ..., o) W(o, ..., o) U-- U U.
4=1

Since X is a P-space, by the analogous argument to the proof
of Theorem 1, there is a family {F(, ..., ) e tg; i- 1, 2, -..}
of closed sets such that (a) F(, .-., )cG(, .-., ) and (b) X-
U F(, ..., c) provided X- U G(o,...,o). Then it is easily shown
4=1 4=1

that {F(oi, ) x W(, -.-, 0:) e f); i- 1, 2, covers Xx Y.
(It is to be remarked that Xx Y- U(Xx Y).) W(x, ..-, ) being
an F-set of Z, we can set:

F(o,... ,oi) x W(o,... ,oi)- U (F(6[,..., oi) x Tt(oi,..- ,o:))where
t----1

T,(, ..-, ) is a closed subset of Z for every t. Then
(18) U {F(l, "-, i) W(OI, "’’, i) O C ?; i--1, 2,

U U l- U {F(a,, ..., or,,) x T,(o4., ..., o,) or,,, e ,.(2,,}].
t=l i=I

Now U {F(,, ..., ai) T(al, ..., a) [ c tg}, which lies in the
bracket of (18), is a locally finite union of closed sets, and hence it
is closed. Then the left hand side of (18) turns out to be an F-
subset of X Z. And by Theorem 2,

dim [ U {F(, ..., ) x W(, ..., ) e t?; i- 1, 2, }]
<-dim(XZ)-s.

Let F-- U {F(al, ., a) W(a, .,) [a e t?; i- 1, 2,... }; then
XYcFcU and dimF<=s. Since {F U[l<=l<=k} is an open
covering of the subspace F, there exists its open refinement {FR[
l<_l<_k; R, open in XZ} such that F UDFR and the order
of {FR]l<=l<-_k}<-_s+l. Hence, the order of {R R (Xx Y) l <_ <_ k} <__

*) Here dimZ is not necessarily zero; therefore we should employ those
which are described in [5, Lemma 1.
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s+l, R(XY)RFUF and {R(XY) II<__I<_k} is an
open covering of X Y. Thus, as a covering of X Y, {R
l<=l<-k} is an open refinement of {U(X Y) ll<=l<=k} whose order
is at most s/ 1. Since U (X Y)- V, the proof is completed.

3. Now we have our main theorem.
Theorem 4. Let X be a normal P-space. If Y is a metric

space with an open basis which is a countable union of star-finite
systems, then

dim (X Y)_-< dim X+dim Y.
Proof. If dim Y= n, Y can be considered as a subset of N(t9) M,

where M is such a subset of unit (2n/ 1)-cube that at most n of its
coordinates are rational ([4) and dim M=n.

Since (XN(2)) is a normal P-space ([1, Theorem 4.1), (X
N(2))M turns out to be countably paracompact and normal ([3,
Theorem 2.2), therefore by [5

dim ((XN(2)) M)___< dim (X N(t?))/ dim M,
and hence, by Theorem 1, we have

dim ((X N(9)) M)=<_ dim X/dim M.
According to Theorem 3,

dim (X Y)=< dim (X (N(2) M)),
therefore dim (X Y)=<dim X/dim M-dim X/dim Y.

Corollary. Let X be a normal P-space.
space with the star-finite property, then

dim (X Y)_<__dim X/dim Y.

q.e.d.
If Y is a metric
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