81. On a Certain Functional-Differential Equation

By Shohei SUGIYAMA

Department of Mathematics, School of Science and Engineering Waseda University, Tokyo (Comm. by Zyoiti SUETUNA, M. J. A., May 19, 1965)

1. Let \mathfrak{M} be a family of functions continuous in $I: 0 \leq t < \infty$ in the *n*-dimensional vector space. Then, we define an operator T satisfying the following conditions:

(i) for any x in \mathfrak{M} , Tx is also contained in \mathfrak{M} ;

(ii) for any sequence $\{x_m\}$ $(x_m \in \mathfrak{M})$ uniformly convergent in I, $\{Tx_m\}$ is also uniformly convergent in I;¹⁾

(iii) for any scalar functions u and v continuous in I, if $u \leq v$ is satisfied for $0 \leq t < s$, where s is an arbitrary constant, then the inequality $Tu \leq Tv$ remains valid for t=s.

Then, let us consider a functional-differential equation such that (1) $x'=f(t, x, Tx), x(0)=x_0, t \in I.$

If we choose the operator and the function f suitably, the equation (1) yields various types of equations, for example, differential equations, integro-differential equations, difference-differential equations, and so on.

In the sequel, the existence of continuous solutions of (1) in I is supposed to be established. However, we need not assume the uniqueness of solutions, so far as we are concerned with the boundedness and stability problems.²⁾

2. We first introduce a V-function as follows. Let V(t, x) be a function of t and x satisfying the following conditions:

(i) V(t, x) is continuous and non-negative in I and $|x| < \infty$;

(ii) V(t, x) satisfies the Lipschitz condition such that

 $|V(t, x) - V(t, y)| \leq k(t) |x - y|,$

where k(t) is continuous in *I*;

(iii) $\lim V(t, x) = \infty$ uniformly in $t \in I$.

In order to derive some results on the boundedness, it is usefull to introduce two quantities $\delta V(t, x, y)$ and DV(t, x) by setting

$$b V(t, x, y) = \overline{\lim_{h \to 0}} \frac{1}{h} (V(t+h, x+hf(t, x, y)) - V(t, x)),$$

 $D V(t, z(t)) = \overline{\lim_{h \to 0}} \frac{1}{h} (V(t+h, z(t+h)) - V(t, z(t))),$

1) This means that the operator T is continuous.

²⁾ The author's paper, in which some theorems on the existence and uniqueness of continuous solutions has been discussed, will shortly appear.

where x, y are arbitrary points, and z(t) is an arbitrary function in \mathfrak{M} . Then, it is not difficult to prove that the equality (2) $\delta V(t, x(t), (Tx)(t)) = DV(t, x(t))$ remains valid in I for any solution x(t) of (1).

Now, we define a function $\omega(t, x, y)$ such that it is continuous and non-negative for I, $0 \leq x < \infty$, $-\infty < y < \infty$. Furthermore, it is supposed that $\omega(t, x, y)$ is monotone increasing with respect to y for any fixed t and x. With this choice of the function $\omega(t, x, y)$, for any non-negative constant $\varepsilon \geq 0$, we consider a functional-differential equation such that

(3) $r' = \omega(t, r, Tr) + \varepsilon, r(0) = r_0 + \varepsilon, t \in I$, for which the existence of the maximal solution $r_{\varepsilon}(t)$ of (3) continuous in I is supposed to be established.

Theorem 1. If the inequality (4) $\delta V(t, x, Tx) \leq \omega(t, V(t, x), (TV)(t, x))$ is fulfilled for any $t \in I$ and x, the relation (5) $V(t, x) \leq r_0(t)$ remains valid in I for any continuous solution x of (1), provided that $V(0, x_0) \leq r_0$ is satisfied.

Proof. From the continuity of x(t), $r_{\varepsilon}(t)$, and V, it turns out that there exists an interval $0 \le t < t_1$, in which the inequality $V(t, x(t)) \le r_{\varepsilon}(t)$ remains valid for any solution x(t) of (1).

Then, if we denote by t_0 the supremum of t_1 , and if t_0 is finite, from the continuity of V, x, r_{ϵ} , and from (2), (4), it follows that

$$egin{aligned} V(t_0,\,x(t_0)) &= r_{\epsilon}(t_0), \ &\omega(t_0,\,V(t_0,\,x(t_0)),\,\,(TV)(t_0,\,x(t_0))) + arepsilon \ &\leq \omega(t_0,\,r(t_0),\,\,(Tr_{\epsilon})(t_0)) + arepsilon \ &= r_{\epsilon}'(t_0) \ &= \lim_{t o t_0} rac{r_{\epsilon}(t) - r_{\epsilon}(t_0)}{t - t_0} \ &\leq \overline{\lim_{t o t_0}} rac{V(t,\,x(t)) - V(t_0,\,x(t_0))}{t - t_0} \ &= D\,V(t_0,\,x(t_0)) \ &= arepsilon\,V(t_0,\,x(t_0)) \ &\equiv \mathcal{O}\,V(t_0,\,x(t_0),\,\,(Tx)(t_0)) \ &\leq \omega(t_0,\,\,V(t_0,\,x(t_0)),\,\,(TV)(t_0,\,x(t_0))), \end{aligned}$$

which is a contradiction, since $\varepsilon > 0$. Hence, the inequality $V(t, x) \leq r_{\varepsilon}(t)$

is fulfilled in *I*. Since $r_{\varepsilon}(t)$ is monotone decreasing as $\varepsilon \to +0$, it uniformly converges to the maximal solution $r_{\varepsilon}(t)$ of (3) corresponding to $\varepsilon = 0$. Thus, we have the inequality (5) in *I*.

By means of Theorem 1, we obtain the following Corollary. If the maximal solution of (3) is bounded, the solu**Proof.** On the contrary, if we suppose that a solution x(t) of (1) is not bounded, there exists a sequence $\{t_k\}, t_k \to \infty$ such that $|x(t_k)| \to \infty$. Then, from the inequality (5) and the definition (iii) of V, it follows that

$$r_{\scriptscriptstyle 0}(t_{\scriptscriptstyle k})\!\geq\!V(t_{\scriptscriptstyle k},\,x(t_{\scriptscriptstyle k}))\!
ightarrow\!\infty$$
 ,

which contradicts the boundedness of $r_0(t)$.

If we consider a particular case such that V = |x|, the inequality (4) is reduced to

 $|f(t, x, Tx)| \leq \omega(t, |x|, |Tx|).$

Furthermore, suppose that $\omega(t, x, y)$ is of the form such that $\omega(t, x, y) = k(t)(M(|x|) + M(|y|))$,

where k(t) is continuous in I and M(r) is piecewise continuous, positive, non-decreasing for $0 < r < \infty$, and M(0) = 0. Then, we have the following

Theorem 2. Suppose that the inequality

 $|f(t, x, y)| \leq k(t)(M(|x|) + M(|y|))$

is satisfied and k(t) is integrable over I, but the integral

$$\int^{\infty} \frac{d\rho}{M(\rho)}$$

is divergent. Then, if T is the bounded operator, any solution of (1) is bounded.

Proof. Since T is bounded, there exists a constant $\alpha > 0$ such that $|Tx| \leq \alpha |x|$ for any $x \in \mathfrak{M}$. Then, if we consider an equation such that

(6) r' = k(t)(M(r) + M(|Tr|)),for any solutions of r of (6) we have the inequalities such that $r' \le k(t)(M(r) + M(\alpha r))$

From (7), it follows along the solution r that

$$\int_{r_0}^r rac{d
ho}{M(
ho)} \leq 2 \int_0^t k(s) ds$$

for $0 < \alpha \leq 1$, and

$$\int_{ar_0}^{ar} \frac{d\rho}{M(\rho)} \leq 2 \int_0^t k(s) ds$$

for $1 \leq \alpha < \infty$. Hence, it follows that r must be bounded in I.