81. On a Certain Functional-Differential Equation

By Shohei Sugiyama
Department of Mathematics, School of Science and Engineering
Waseda University, Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., May 19, 1965)

1. Let \mathfrak{M} be a family of functions continuous in $I: 0 \leqq t<\infty$ in the n-dimensional vector space. Then, we define an operator T satisfying the following conditions:
(i) for any x in $\mathfrak{M}, T x$ is also contained in \mathfrak{M};
(ii) for any sequence $\left\{x_{m}\right\}$ ($x_{m} \in \mathfrak{M}$) uniformly convergent in I, $\left\{T x_{m}\right\}$ is also uniformly convergent in $I ;{ }^{1)}$
(iii) for any scalar functions u and v continuous in I, if $u \leqq v$ is satisfied for $0 \leqq t<s$, where s is an arbitrary constant, then the inequality $T u \leqq T v$ remains valid for $t=s$.

Then, let us consider a functional-differential equation such that (1)

$$
x^{\prime}=f(t, x, T x), x(0)=x_{0}, t \in I .
$$

If we choose the operator and the function f suitably, the equation (1) yields various types of equations, for example, differential equations, integro-differential equations, difference-differential equations, and so on.

In the sequel, the existence of continuous solutions of (1) in I is supposed to be established. However, we need not assume the uniqueness of solutions, so far as we are concerned with the boundedness and stability problems. ${ }^{2)}$
2. We first introduce a V-function as follows. Let $V(t, x)$ be a function of t and x satisfying the following conditions:
(i) $V(t, x)$ is continuous and non-negative in I and $|x|<\infty$;
(ii) $V(t, x)$ satisfies the Lipschitz condition such that

$$
|V(t, x)-V(t, y)| \leqq k(t)|x-y|
$$

where $k(t)$ is continuous in I;
(iii) $\lim _{|x| \rightarrow \infty} V(t, x)=\infty$ uniformly in $t \in I$.

In order to derive some results on the boundedness, it is usefull to introduce two quantities $\mathfrak{D} V(t, x, y)$ and $D V(t, x)$ by setting

$$
\begin{aligned}
& \mathcal{D} V(t, x, y)=\varlimsup_{h \rightarrow 0} \frac{1}{h}(V(t+h, x+h f(t, x, y))-V(t, x)), \\
& D V(t, z(t))=\varlimsup_{h \rightarrow 0} \frac{1}{h}(V(t+h, z(t+h))-V(t, z(t)),
\end{aligned}
$$

[^0]where x, y are arbitrary points, and $z(t)$ is an arbitrary function in \mathfrak{M}. Then, it is not difficult to prove that the equality
\[

$$
\begin{equation*}
\mathfrak{D} V(t, x(t),(T x)(t))=D V(t, x(t)) \tag{2}
\end{equation*}
$$

\]

remains valid in I for any solution $x(t)$ of (1).
Now, we define a function $\omega(t, x, y)$ such that it is continuous and non-negative for $I, 0 \leqq x<\infty,-\infty<y<\infty$. Furthermore, it is supposed that $\omega(t, x, y)$ is monotone increasing with respect to y for any fixed t and x. With this choice of the function $\omega(t, x, y)$, for any non-negative constant $\varepsilon \geqq 0$, we consider a functional-differential equation such that

$$
(3) \quad r^{\prime}=\omega(t, r, T r)+\varepsilon, r(0)=r_{0}+\varepsilon, t \in I
$$

for which the existence of the maximal solution $r_{\varepsilon}(t)$ of (3) continuous in I is supposed to be established.

Theorem 1. If the inequality
(4) $\quad \mathfrak{D} V(t, x, T x) \leqq \omega(t, V(t, x),(T V)(t, x))$
is fulfilled for any $t \in I$ and x, the relation

$$
\begin{equation*}
V(t, x) \leqq r_{0}(t) \tag{5}
\end{equation*}
$$

remains valid in I for any continuous solution x of (1), provided that $V\left(0, x_{0}\right) \leqq r_{0}$ is satisfied.

Proof. From the continuity of $x(t), r_{\epsilon}(t)$, and V, it turns out that there exists an interval $0 \leqq t<t_{1}$, in which the inequality $V(t, x(t)) \leqq r_{\varepsilon}(t)$ remains valid for any solution $x(t)$ of (1).

Then, if we denote by t_{0} the supremum of t_{1}, and if t_{0} is finite, from the continuity of V, x, r_{e}, and from (2), (4), it follows that

$$
\begin{aligned}
& V\left(t_{0}, x\left(t_{0}\right)\right)=r_{\varepsilon}\left(t_{0}\right), \\
& \omega\left(t_{0}, V\left(t_{0}, x\left(t_{0}\right)\right),(T V)\left(t_{0}, x\left(t_{0}\right)\right)\right)+\varepsilon \\
& \leqq \omega\left(t_{0}, r\left(t_{0}\right),\left(T r_{\varepsilon}\right)\left(t_{0}\right)\right)+\varepsilon \\
&= r_{\varepsilon}^{\prime}\left(t_{0}\right) \\
&= \lim _{t \rightarrow t_{0}} \frac{r_{\varepsilon}(t)-r_{\varepsilon}\left(t_{0}\right)}{t-t_{0}} \\
& \leqq \varlimsup_{t \rightarrow t_{0}} \frac{V(t, x(t))-V\left(t_{0}, x\left(t_{0}\right)\right)}{t-t_{0}} \\
&= D V\left(t_{0}, x\left(t_{0}\right)\right) \\
&= \emptyset V\left(t_{0}, x\left(t_{0}\right),(T x)\left(t_{0}\right)\right) \\
& \leqq \omega\left(t_{0}, V\left(t_{0}, x\left(t_{0}\right)\right),(T V)\left(t_{0}, x\left(t_{0}\right)\right)\right),
\end{aligned}
$$

which is a contradiction, since $\varepsilon>0$. Hence, the inequality

$$
V(t, x) \leqq r_{\varepsilon}(t)
$$

is fulfilled in I. Since $r_{\varepsilon}(t)$ is monotone decreasing as $\varepsilon \rightarrow+0$, it uniformly converges to the maximal solution $r_{0}(t)$ of (3) corresponding to $\varepsilon=0$. Thus, we have the inequality (5) in I.

By means of Theorem 1, we obtain the following
Corollary. If the maximal solution of (3) is bounded, the solu-
tions of (1) are bounded.
Proof. On the contrary, if we suppose that a solution $x(t)$ of (1) is not bounded, there exists a sequence $\left\{t_{k}\right\}, t_{k} \rightarrow \infty$ such that $\left|x\left(t_{k}\right)\right| \rightarrow \infty$. Then, from the inequality (5) and the definition (iii) of V, it follows that

$$
r_{0}\left(t_{k}\right) \geqq V\left(t_{k}, x\left(t_{k}\right)\right) \rightarrow \infty,
$$

which contradicts the boundedness of $r_{0}(t)$.
If we consider a particular case such that $V=|x|$, the inequality (4) is reduced to

$$
|f(t, x, T x)| \leqq \omega(t,|x|,|T x|)
$$

Furthermore, suppose that $\omega(t, x, y)$ is of the form such that

$$
\omega(t, x, y)=k(t)(M(|x|)+M(|y|)),
$$

where $k(t)$ is continuous in I and $M(r)$ is piecewise continuous, positive, non-decreasing for $0<r<\infty$, and $M(0)=0$. Then, we have the following

Theorem 2. Suppose that the inequality

$$
|f(t, x, y)| \leqq k(t)(M(|x|)+M(|y|))
$$

is satisfied and $k(t)$ is integrable over I, but the integral

$$
\int^{\infty} \frac{d \rho}{M(\rho)}
$$

is divergent. Then, if T is the bounded operator, any solution of (1) is bouuded.

Proof. Since T is bounded, there exists a constant $\alpha>0$ such that $|T x| \leqq \alpha|x|$ for any $x \in \mathfrak{M}$. Then, if we consider an equation such that
(6) $\quad r^{\prime}=k(t)(M(r)+M(|\operatorname{Tr}|))$,
for any solutions of r of (6) we have the inequalities such that

$$
\begin{align*}
r^{\prime} & \leqq k(t)(M(r)+M(\alpha r)) \\
& \leqq 2 k(t) M(r) \tag{7}\\
& (0<\alpha \leqq 1) \\
\leqq 2 k(t) M(\alpha r) & (1 \leqq \alpha<\infty) .
\end{align*}
$$

From (7), it follows along the solution r that

$$
\int_{r_{0}}^{r} \frac{d \rho}{M(\rho)} \leqq 2 \int_{0}^{t} k(s) d s
$$

for $0<\alpha \leqq 1$, and

$$
\int_{a r_{0}}^{\alpha r} \frac{d \rho}{M(\rho)} \leqq 2 \int_{0}^{t} k(s) d s
$$

for $1 \leqq \alpha<\infty$. Hence, it follows that r must be bounded in I.

[^0]: 1) This means that the operator T is continuous.
 2) The author's paper, in which some theorems on the existence and uniqueness of continuous solutions has been discussed, will shortly appear.
