118. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XVI

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 13, 1965)

Let $\{\lambda_{\nu}\}_{\nu=1,2,3,\dots}, D_{j}(j=1, 2, 3, \dots, n)$, and $T(\lambda)$ be the same notations as those defined in Part XIII [cf. Proc. Japan Acad., Vol. 40, No. 7, 492-497 (1964)]; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; and let us suppose that $\{\lambda_{\nu}\}$ is everywhere dense on a (closed or open) rectifiable Jordan curve Γ and that for any small positive ε the circle $|\lambda| = \sup_{\nu} |\lambda_{\nu}| + \varepsilon$ contains the mutually disjoint sets Γ , D_1, D_2, \dots, D_{n-1} , and D_n inside itself. In this paper we shall discuss the respective behaviours concerning ρ of the maximum moduli of $\chi(\lambda)$ and $T(\lambda)$ on the circle $|\lambda| = \rho$ with $\sup_{\nu} |\lambda_{\nu}| < \rho < \infty$.

Theorem 43. Let $T(\lambda)$ be the function with singularities $\overline{\{\lambda_{\nu}\}} \cup \left[\bigcup_{j=1}^{n} D_{j}\right]$ stated above; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; let $\sigma = \sup_{\nu} |\lambda_{\nu}|$; and let $M_{\chi}(\rho)$ denote the maximum modulus of $\chi(\lambda)$ on the circle $|\lambda| = \rho$ with $\sigma < \rho < \infty$. Then

$$egin{aligned} &M_{\chi}(
ho')\!\leq\!M_{\chi}(
ho) &(\sigma\!<\!
ho\!<\!
ho'\!<\!\infty),\ &M_{\chi}(
ho)\!
ightarrow\!\infty &(
ho\!
ightarrow\!\sigma), \end{aligned}$$

and for any ρ with $\sigma < \rho < \infty$ (A) $\frac{1}{2} \sqrt{\sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)|^2} \leq M_{\chi}(\rho) \leq \frac{1}{2} \sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)| < \infty$, where

$$a_{\mu}(
ho) = rac{1}{\pi} \int_{0}^{2\pi} T(
ho e^{it}) \cos \mu t \, dt iggraphi \ b_{\mu}(
ho) = rac{1}{\pi} \int_{0}^{2\pi} T(
ho e^{it}) \sin \mu t \, dt iggraphi \ (\sigma <
ho < \infty, \ \mu = 1, \ 2, \ 3, \ \cdots).$$

Proof. Let C denote the positively oriented circle $|\lambda| = \rho$ with $\sigma < \rho < \infty$, and let $R(\lambda)$ be the ordinary part of $T(\lambda)$. Then, as already demonstrated in Theorem 30 of Part XIII quoted above,

$$\frac{1}{2\pi i} \int_{\sigma} \frac{T(\lambda)}{(\lambda-z)^k} d\lambda = \begin{cases} R^{(k-1)}(z)/(k-1)! & \text{(for every } z \text{ inside } C) \\ -\chi^{(k-1)}(z)/(k-1)! & \text{(for every } z \text{ outside } C), \end{cases}$$

where $k=1, 2, 3, \cdots$. Furthermore, as can be seen from the method of the proof of (5) [cf. Proc. Japan Acad., Vol. 38, No. 8, 452-456 (1962)], it is verified with the help of these relations that

S. INOUE

$$R(\kappa
ho e^{i heta}) + \chi\left(rac{
ho}{\kappa}e^{i heta}
ight) = rac{1}{2\pi}\int_{_0}^{_{2\pi}}T(
ho e^{it})rac{1-\kappa^2}{1+\kappa^2-2\kappa\cos{(heta-t)}}dt \ (\sigma<
ho<\infty,\ 0<\kappa<1).$$

Since, on the other hand,

$$R(\kappa
ho e^{i heta}) = rac{1}{2\pi} \int_{0}^{2\pi} R(
ho e^{it}) rac{1-\kappa^2}{1+\kappa^2-2\kappa\cos{(heta-t)}} \, dt$$

by the definition that $R(\lambda)$ is an integral function, we have therefore $\chi\left(\frac{\rho}{\kappa}e^{i\theta}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \chi(\rho e^{it}) \frac{1-\kappa^2}{1+\kappa^2-2\kappa\cos\left(\theta-t\right)} dt.$

This result and the equality

$$rac{1}{2\pi} \int_{0}^{2\pi} rac{1\!-\!\kappa^2}{1\!+\!\kappa^2\!-\!2\kappa\,\cos{(heta\!-\!t)}} \,dt\!=\!1$$

enable us to establish the desired inequality $M_{\chi}\left(\frac{\rho}{\kappa}\right) \leq M_{\chi}(\rho)$ for every κ with $0 < \kappa < 1$.

In addition to it, the following equalities hold:

(36)
$$T\left(\frac{\rho}{\kappa}e^{i\theta}\right) = \frac{a_{0}(\rho)}{2} + \frac{1}{2}\sum_{\mu=1}^{\infty} (a_{\mu}(\rho) - ib_{\mu}(\rho))\left(\frac{e^{i\theta}}{\kappa}\right)^{\mu} + \frac{1}{2}\sum_{\mu=1}^{\infty} (a_{\mu}(\rho) + ib_{\mu}(\rho))\left(\frac{\kappa}{e^{i\theta}}\right)^{\mu} \qquad (0 < \kappa < 1),$$
$$\frac{1}{2}\sum_{\mu=1}^{\infty} (a_{\mu}(\rho) + ib_{\mu}(\rho))\left(\frac{\kappa}{e^{i\theta}}\right)^{\mu} = \chi\left(\frac{\rho}{\kappa}e^{i\theta}\right) \qquad (0 < \kappa < 1),$$

and

$$rac{a_0(
ho)}{2} + rac{1}{2} \sum_{\mu=1}^{\infty} (a_\mu(
ho) - i b_\mu(
ho)) \Big(rac{e^{i heta}}{\kappa}\Big)^\mu = R \Big(rac{
ho}{\kappa} e^{i heta}\Big) \qquad (0 < \kappa < \infty),$$

where $a_{\mu}(\rho)$ and $b_{\mu}(\rho)$ are the coefficients defined in the statement of the present theorem and $a_0(\rho) = \frac{1}{\pi} \int_0^{2\pi} T(\rho e^{it}) dt$ [cf. Proc. Japan Acad., Vol. 40, No. 8, 654-659 (1964)]. Accordingly $\left| \chi \left(\frac{\rho}{\kappa} e^{i\theta} \right) \right| \leq \frac{1}{2} \sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)| \kappa^{\mu}$

and

(37)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \chi \left(\frac{\rho}{\kappa} e^{it} \right) \right|^{2} dt = \frac{1}{4} \sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)|^{2} \kappa^{2\mu},$$

so that

$$(38) \quad \frac{1}{2} \sqrt{\sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)|^{2} \kappa^{2\mu}} \leq M_{\chi} \left(\frac{\rho}{\kappa}\right) \leq \frac{1}{2} \sum_{\mu=1}^{\infty} |a_{\mu}(\rho) + ib_{\mu}(\rho)| \kappa^{\mu}$$

$$(0 < \kappa < 1).$$

Next we can find immediately from (36) that

$$a_\mu\!\left(rac{
ho}{\kappa}
ight)\!+\!ib_\mu\!\left(rac{
ho}{\kappa}
ight)\!=\!rac{1}{\pi}\!\int_{_0}^{_{2\pi}}\!T\!\left(rac{
ho}{\kappa}e^{it}
ight)\!e^{i\mu t}dt
onumber \ =\!((a_\mu(
ho)\!+\!ib_\mu(
ho))\kappa^\mu$$

542

No. 7]

and hence that

$$\sum_{j=1}^{\infty} \left| a_\mu \left(rac{
ho}{\kappa}
ight) \! + i b_\mu \! \left(rac{
ho}{\kappa}
ight)
ight| = \sum_{\mu=1}^{\infty} \left| a_\mu(
ho) \! + i b_\mu(
ho) \left| \, \kappa^\mu
ight.$$

On the other hand, as already shown in Theorem 38 [cf. Proc. Japan Acad., Vol. 40, No. 8, 654-659 (1964)],

$$\chi(\lambda) = \sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{-\mu} \quad (|\lambda| \ge \rho > \sigma),$$

where

$$egin{aligned} C_{-\mu} &= rac{1}{2\pi i} \int_{\sigma} rac{T(\lambda)}{\lambda^{-\mu+1}} d\lambda \ &= rac{
ho^{\mu}(a_{\mu}(
ho)+ib_{\mu}(
ho))}{2} \end{aligned}$$

and $\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{-\mu}$ is essentially an infinite series. Since, in addition, it is verified by Cauchy's integral theorem that $C_{-\mu}$ is irrespective of ρ , $\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{-\mu}$ is absolutely convergent in the domain $\{\lambda : |\lambda| > \sigma\}$. Hence

$$\sum_{\mu=1} \left| a_{\mu} \left(\frac{\nu}{\kappa} \right) + i b_{\mu} \left(\frac{\nu}{\kappa} \right) \right| < \sum_{\mu=1} \left| a_{\mu}(\rho) + i b_{\mu}(\rho) \right| < \infty$$
with $\sigma < \rho < \infty$. By allowing κ in (28) to tool

for any ρ with $\sigma < \rho < \infty$. By allowing κ in (38) to tend to 1 we obtain therefore (A), as we were to prove.

Thus it remains only to prove that $M_{\chi}(\rho) \rightarrow \infty \ (\rho \rightarrow \sigma)$.

Since there exists on the circle $|\lambda| = \sigma$ at least one point of $\{\lambda_{\nu}\}$ or one accumulating point of $\{\lambda_{\nu}\}$ such that it does not belong to $\{\lambda_{\nu}\}$ itself, we denote by $\sigma e^{i\alpha}$ that singularity of $\chi(\lambda)$. If, contrary to what we wish to prove, $\{M_{\chi}(\rho)\}_{\rho}$ were bounded on an open interval (σ, σ') with $\sigma < \sigma' < \infty$, then $\chi(\lambda)$ would be bounded on the intersection of the annular domain $\{\lambda: \sigma < |\lambda| < \sigma'\}$ and an arbitrary neighbourhood of $\sigma e^{i\alpha}$. Since, however, $\chi(\lambda)$ is regular and hence continuous on that intersection, the above result is in contradiction with the hypothesis that every λ_{ν} of $\{\lambda_{\nu}\}$ everywhere dense on Γ is a pole in the sense of the functional analysis. Consequently $M_{\chi}(\rho) \rightarrow \infty$ $(\rho \rightarrow \sigma)$, as we wished to prove.

Remark 1. The notation $\{\lambda_{\nu}\}$ in the statement of Theorem 43 denotes the closure of $\{\lambda_{\nu}\}$.

Theorem 44. Let $T(\lambda)$ and σ be the same notations as those in Theorem 43, and $M_T(\rho)$ the maximum modulus of $T(\lambda)$ on the circle $|\lambda| = \rho$ with $\sigma < \rho < \infty$. If the ordinary part $R(\lambda)$ of $T(\lambda)$ is a constant, then

$$egin{aligned} &M_{T}(
ho')\!\leq\!M_{T}(
ho) &(\sigma\!<\!
ho\!<\!
ho'\!<\!\infty),\ &M_{T}(
ho)\!
ightarrow\!\infty &(
ho\!
ightarrow\!\sigma); \end{aligned}$$

and if, contrary to it, $R(\lambda)$ is an integral function, then there exists a suitable positive constant ρ_0 such that the inequality $M_T(\rho') \leq M_T(\rho)$ S. INOUE

holds for every pair of positive constants ρ , ρ' with $\sigma < \rho < \rho' < \rho_0 < \infty$, and also $M_r(\rho) \rightarrow \infty \ (\rho \rightarrow \sigma)$.

Proof. If $R(\lambda)$ is a constant c, then, as can be found immediately from the earlier discussion,

$$T\!\left(\!\frac{
ho}{\kappa}e^{i heta}\!
ight)\!=\!rac{1}{2\pi}\int_{_{0}^{2\pi}}^{_{2\pi}}\!T(
ho e^{it})rac{1\!-\!\kappa^{2}}{1\!+\!\kappa^{2}\!-\!2\kappa\cos{(heta\!-\!t)}}\,dt \quad (\sigma\!<\!
ho\!<\!\infty\,,\,0\!<\!\kappa\!<\!1)$$

and hence $M_{r}(\rho') \leq M_{r}(\rho)$ for every pair of ρ, ρ' with $\sigma < \rho < \rho' < \infty$. Since, moreover, $T(\lambda) = c + \chi(\lambda), M_{r}(\rho) \geq M_{\chi}(\rho) - |c|$. Thus it is a direct consequence of the preceding theorem that $M_{r}(\rho) \rightarrow \infty \ (\rho \rightarrow \sigma)$.

We next consider the case where $R(\lambda)$ is a polynomial in λ or a transcendental integral function.

In the first place it follows from the equality $T(\lambda) = R(\lambda) + \chi(\lambda)$ that

(39)
$$\begin{split} M_{\chi}(\rho) - M_{R}(\rho) &\leq M_{\chi}(\rho) \leq M_{\chi}(\rho) + M_{R}(\rho) \\ (\sigma < \rho < \infty, \ M_{R}(\rho) = \max \mid R(\rho e^{i\theta}) \mid). \end{split}$$

On the other hand, since $M_{\gamma}(\rho) \rightarrow \infty$ $(\rho \rightarrow \sigma)$ and since $M_{R}(\rho)$ decreases monotonously as ρ tends to σ , there exist suitable positive constants ρ_0, ρ'_0 with $\sigma < \rho_0 < \rho'_0 < \infty$ such that $M_{\chi}(\rho'_0) + M_R(\rho'_0) \le$ $M_r(\rho_0) - M_R(\rho_0)$ and hence $M_r(\rho'_0) \leq M_r(\rho_0)$. In fact, the inequality $M_{r}(\rho_{0}) + M_{R}(\rho_{0}) \leq M_{r}(\rho_{0}) - M_{R}(\rho_{0})$ holds provided that ρ_{0} is chosen suitably near to σ in comparison with ρ'_0 . Suppose now that the annular closed domains $\{\lambda: \rho_0 \leq |\lambda| \leq \rho'_0\}$ and $\{\lambda: \rho \leq |\lambda| \leq \rho'_0\}$ with $\sigma < \rho < \rho_0 < \rho'_0 < \infty$ are mapped by the transformation $w = T(\lambda)$ onto $\Delta(\rho_0, \rho'_0)$ and $\Delta(\rho, \rho'_0)$ in the complex w-plane respectively. Then $\Delta(\rho_0, \rho'_0) \subset \Delta(\rho, \rho'_0)$ and $\Delta(\rho, \rho'_0)$ here enlarges outwards as ρ decreases to σ . As a result, it is found from the principle of the maximum modulus for a regular function that $M_T(\rho_0) \leq M_T(\rho)$ for every ρ with $\sigma < \rho < \rho_0$. By following the argument used above, we can therefore establish the inequality $M_{T}(\rho') \leq M_{T}(\rho)$ holding for every pair of ρ, ρ' with $\sigma < \rho < \rho' < \rho_{0}$. Furthermore it is at once obvious from (39) and the preceding theorem that $M_{T}(\rho) \rightarrow \infty (\rho \rightarrow \sigma)$.

With these results the present theorem has been proved.

Remark 2. The results in Theorems 43 and 44 are valid, of course, for the function $\hat{T}(\lambda)$ treated in Theorems 41 and 42 [cf. Proc. Japan Acad., Vol. 41, No. 2, 150-154 (1965)].

On the assumption that $R(\lambda)$ is not a constant, we shall next treat of the relation among $M_{\mathbb{R}}(\rho)$, $M_{\chi}(\rho)$, and the coefficients of a_{μ} , b_{μ} $(\mu=1, 2, 3\cdots)$. The following theorem concerning it is, in particular, significant for sufficiently large values of ρ from a point of view of the fact that

$$\begin{array}{c} M_{\scriptscriptstyle R}(
ho) \longrightarrow \infty \ M_{\chi}(
ho) \longrightarrow 0 \end{array}
ight\} \quad (
ho \longrightarrow \infty).$$

544

Theorem 45. Let $T(\lambda)$ and σ be the same notations as before; and let the ordinary part $R(\lambda)$ of $T(\lambda)$ be an integral function, not a constant; and let $K_{\mu} = a_{\mu}^{2}(\rho) + b_{\mu}^{2}(\rho)$, where $a_{\mu}(\rho)$ and $b_{\mu}(\rho)$ are the coefficients defined before. Then K_{μ} is independent of values of ρ as far as ρ satisfies the condition $\sigma < \rho < \infty$; and moreover

$$\left|\sum_{\mu \ge 1} K_{\mu}\right| \le 4M_{\mathbb{R}}(\rho)M_{\chi}(\rho) \quad \text{(for every } \rho \text{ with } \sigma < \rho < \infty\text{)},$$

where $\sum_{\mu \ge 1} K_{\mu}$ is a finite or an infinite series according as $R(\lambda)$ is a polynomial in λ or a transcendental integral function.

Proof. As already pointed out, $a_{\mu}\left(\frac{\rho}{\kappa}\right) + ib_{\mu}\left(\frac{\rho}{\kappa}\right) = (a_{\mu}(\rho) + ib_{\mu}(\rho))\kappa^{\mu}$ $(\sigma < \rho < \infty, 0 < \kappa < 1)$; and similarly $a_{\mu}\left(\frac{\rho}{\kappa}\right) - ib_{\mu}\left(\frac{\rho}{\kappa}\right) = (a_{\mu}(\rho) - ib_{\mu}(\rho))\kappa^{-\mu}$. Accordingly $a_{\mu}^{2}\left(\frac{\rho}{\kappa}\right) + b_{\mu}^{2}\left(\frac{\rho}{\kappa}\right) = a_{\mu}^{2}(\rho) + b_{\mu}^{2}(\rho)$ for every ρ with $\sigma < \rho < \infty$ and for every κ with $0 < \kappa < 1$. This result implies that $a_{\mu}^{2}(\rho) + b_{\mu}^{2}(\rho)$ is a constant independent of values of ρ as far as ρ satisfies the condition $\sigma < \rho < \infty$. If we now denote by K_{μ} this constant depending only on μ , an application of the expansions of $R\left(\frac{\rho}{\kappa}e^{i\theta}\right)$ and $\chi\left(\frac{\rho}{\kappa}e^{i\theta}\right)$

yields the equality

$$\frac{1}{4}\sum_{\mu\geq 1}K_{\mu} = \frac{1}{2\pi}\int_{0}^{2\pi} R\!\left(\frac{\rho}{\kappa}\,e^{it}\right) \chi\!\left(\frac{\rho}{\kappa}\,e^{it}\right) dt \qquad (\sigma < \rho < \infty, \, 0 < \kappa < 1)$$

and hence the inequality

$$\frac{1}{4} \left| \sum_{\mu \ge 1} K_{\mu} \right| \le M_{\scriptscriptstyle R}(\rho) M_{\chi}(\rho) \qquad (\sigma < \rho < \infty),$$

on the assumption that $R(\lambda)$ is not a constant. Since, in addition,

$$egin{aligned} rac{a_{\mu}(
ho)-ib_{\mu}(
ho)}{2} &= rac{1}{2\pi}\int_{0}^{2\pi}T(
ho e^{it})e^{-i\mu t}dt\ &= rac{
ho^{\mu}}{2\pi i}\int_{\sigma}rac{T(\lambda)}{\lambda^{\mu+1}}d\lambda\ &= rac{
ho^{\mu}R^{(\mu)}(0)}{\prime\prime l} ext{,} \end{aligned}$$

it is found that $\sum_{\mu \ge 1} K_{\mu}$ is a finite series as far as $R(\lambda)$ is a polynomial in λ . Since, however, the expansion of $R\left(\frac{\rho}{\kappa}e^{i\theta}\right)$ is an infinite series provided that $R(\lambda)$ is a transcendental integral function, and since the expansion of $\chi\left(\frac{\rho}{\kappa}e^{i\theta}\right)$ is also an infinite series as already indicated, $\sum_{\mu \ge 1} K_{\mu}$ is an infinite series under this condition on $R(\lambda)$.

The proof of the theorem has thus been finished.

Remark 3. Even if $R(\lambda)$ is a transcendental integral function, $\sum_{\mu\geq 1} |K_{\mu}|$ also converges by virtue of the fact that the expansions of $R(\lambda)$ and $\chi(\lambda)$ both converge absolutely in the domain $\{\lambda: \sigma < |\lambda| < \infty\}$. In addition, the result of Theorem 45 is rewritten in the form of

$$\left|\sum_{\mu \ge 1} \frac{R^{(\mu)}(0)C_{-\mu}}{\mu!}\right| \le M_{\scriptscriptstyle R}(\rho)M_{\scriptscriptstyle \chi}(\rho) \qquad (\sigma < \rho < \infty),$$

where $C_{-\mu}$ is the notation used in the course of the proof of Theorem 43.