118. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XVI

By Sakuji Inoue
Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, m.J.A., Sept. 13, 1965)

Let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}, D_{j}(j=1,2,3, \cdots, n)$, and $T(\lambda)$ be the same notations as those defined in Part XIII [cf. Proc. Japan Acad., Vol. 40, No. 7, 492-497 (1964)]; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; and let us suppose that $\left\{\lambda_{\nu}\right\}$ is everywhere dense on a (closed or open) rectifiable Jordan curve Γ and that for any small positive ε the circle $|\lambda|=\sup _{\nu}\left|\lambda_{\nu}\right|+\varepsilon$ contains the mutually disjoint sets $\Gamma, D_{1}, D_{2}, \cdots, D_{n-1}$, and D_{n} inside itself. In this paper we shall discuss the respective behaviours concerning ρ of the maximum moduli of $\chi(\lambda)$ and $T(\lambda)$ on the circle $|\lambda|=\rho$ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$.

Theorem 43. Let $T(\lambda)$ be the function with singularities $\left\{\overline{\left.\lambda_{\nu}\right\}} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]\right.$ stated above; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; let $\sigma=\sup _{\nu}\left|\lambda_{\nu}\right|$; and let $M_{\chi}(\rho)$ denote the maximum modulus of $\chi(\lambda)$ on the circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$. Then

$$
\begin{aligned}
& M_{\chi}\left(\rho^{\prime}\right) \leqq M_{\chi}(\rho) \quad\left(\sigma<\rho<\rho^{\prime}<\infty\right), \\
& M_{x}(\rho) \rightarrow \infty \quad(\rho \rightarrow \sigma),
\end{aligned}
$$

and for any ρ with $\sigma<\rho<\infty$ (A) $\frac{1}{2} \sqrt{\sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|^{2}} \leqq M_{\chi}(\rho) \leqq \frac{1}{2} \sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|<\infty$, where

$$
\left.\begin{array}{l}
a_{\mu}(\rho)=\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \cos \mu t d t \\
b_{\mu}(\rho)=\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \sin \mu t d t
\end{array}\right\}(\sigma<\rho<\infty, \mu=1,2,3, \cdots)
$$

Proof. Let C denote the positively oriented circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$, and let $R(\lambda)$ be the ordinary part of $T(\lambda)$. Then, as already demonstrated in Theorem 30 of Part XIII quoted above,

$$
\frac{1}{2 \pi i} \int_{\sigma} \frac{T(\lambda)}{(\lambda-z)^{k}} d \lambda=\left\{\begin{array}{l}
R^{(k-1)}(z) /(k-1)!\quad \text { (for every } z \text { inside } C \text {) } \\
\left.-\chi^{(k-1)}(z) /(k-1)!\quad \text { (for every } z \text { outside } C\right),
\end{array}\right.
$$

where $k=1,2,3, \cdots$. Furthermore, as can be seen from the method of the proof of (5) [cf. Proc. Japan Acad., Vol. 38, No. 8, 452-456 (1962)], it is verified with the help of these relations that

$$
R\left(\kappa \rho e^{i \theta}\right)+\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t
$$

$$
(\sigma<\rho<\infty, 0<\kappa<1)
$$

Since, on the other hand,

$$
R\left(\kappa \rho e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} R\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t
$$

by the definition that $R(\lambda)$ is an integral function, we have therefore

$$
\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \chi\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t
$$

This result and the equality

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t=1
$$

enable us to establish the desired inequality $M_{\chi}\left(\frac{\rho}{\kappa}\right) \leqq M_{\chi}(\rho)$ for every κ with $0<\kappa<1$.

In addition to it, the following equalities hold:

$$
\begin{align*}
& T\left(\frac{\rho}{\kappa} e^{i \theta}\right)=\frac{a_{0}(\rho)}{2}+\frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}(\rho)-i b_{\mu}(\rho)\right)\left(\frac{e^{i \theta}}{\kappa}\right)^{\mu} \tag{36}\\
&+\frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}(\rho)+i b_{\mu}(\rho)\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{\mu} \quad(0<\kappa<1) \\
& \frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}(\rho)+i b_{\mu}(\rho)\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{\mu}=\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right) \quad(0<\kappa<1)
\end{align*}
$$

and

$$
\frac{a_{0}(\rho)}{2}+\frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}(\rho)-i b_{\mu}(\rho)\right)\left(\frac{e^{i \theta}}{\kappa}\right)^{\mu}=R\left(\frac{\rho}{\kappa} e^{i \theta}\right) \quad(0<\kappa<\infty)
$$

where $a_{\mu}(\rho)$ and $b_{\mu}(\rho)$ are the coefficients defined in the statement of the present theorem and $a_{0}(\rho)=\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) d t$ [cf. Proc. Japan Acad., Vol. 40, No. 8, 654-659 (1964)]. Accordingly

$$
\left|\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right)\right| \leqq \frac{1}{2} \sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right| \kappa^{\mu}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\chi\left(\frac{\rho}{\kappa} e^{i t}\right)\right|^{2} d t=\frac{1}{4} \sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|^{2} \kappa^{2 \mu} \tag{37}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{2} \sqrt{\sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|^{2} \kappa^{2 \mu}} \leqq M_{x}\left(\frac{\rho}{\kappa}\right) \leqq \frac{1}{2} \sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right| \kappa^{\mu} \tag{38}
\end{equation*}
$$

$$
(0<\kappa<1)
$$

Next we can find immediately from (36) that

$$
\begin{aligned}
a_{\mu}\left(\frac{\rho}{\kappa}\right)+i b_{\mu}\left(\frac{\rho}{\kappa}\right) & =\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\frac{\rho}{\kappa} e^{i t}\right) e^{i \mu t} d t \\
& =\left(\left(a_{\mu}(\rho)+i b_{\mu}(\rho)\right) \kappa^{\mu}\right.
\end{aligned}
$$

and hence that

$$
\sum_{\mu=1}^{\infty}\left|a_{\mu}\left(\frac{\rho}{\kappa}\right)+i b_{\mu}\left(\frac{\rho}{\kappa}\right)\right|=\sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right| \kappa^{\mu} .
$$

On the other hand, as already shown in Theorem 38 [cf. Proc. Japan Acad., Vol. 40, No. 8, 654-659 (1964)],

$$
\chi(\lambda)=\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{-\mu} \quad(|\lambda| \geqq \rho>\sigma)
$$

where

$$
\begin{aligned}
C_{-\mu} & =\frac{1}{2 \pi i} \int_{\sigma} \frac{T(\lambda)}{\lambda^{-\mu+1}} d \lambda \\
& =\frac{\rho^{\mu}\left(a_{\mu}(\rho)+i b_{\mu}(\rho)\right)}{2}
\end{aligned}
$$

and $\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{\lambda^{-\mu}}$ is essentially an infinite series. Since, in addition, it is verified by Cauchy's integral theorem that $C_{-\mu}$ is irrespective of ρ, $\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{-\mu}$ is absolutely convergent in the domain $\{\lambda:|\lambda|>\sigma\}$. Hence

$$
\sum_{\mu=1}^{\infty}\left|a_{\mu}\left(\frac{\rho}{\kappa}\right)+i b_{\mu}\left(\frac{\rho}{\kappa}\right)\right|<\sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|<\infty
$$

for any ρ with $\sigma<\rho<\infty$. By allowing κ in (38) to tend to 1 we obtain therefore (A), as we were to prove.

Thus it remains only to prove that $M_{x}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$.
Since there exists on the circle $|\lambda|=\sigma$ at least one point of $\left\{\lambda_{\nu}\right\}$ or one accumulating point of $\left\{\lambda_{\nu}\right\}$ such that it does not belong to $\left\{\lambda_{\nu}\right\}$ itself, we denote by $\sigma e^{i \alpha}$ that singularity of $\chi(\lambda)$. If, contrary to what we wish to prove, $\left\{M_{\chi}(\rho)\right\}_{\rho}$ were bounded on an open interval (σ, σ^{\prime}) with $\sigma<\sigma^{\prime}<\infty$, then $\chi(\lambda)$ would be bounded on the intersection of the annular domain $\left\{\lambda: \sigma<|\lambda|<\sigma^{\prime}\right\}$ and an arbitrary neighbourhood of $\sigma e^{i \alpha}$. Since, however, $\chi(\lambda)$ is regular and hence continuous on that intersection, the above result is in contradiction with the hypothesis that every λ_{ν} of $\left\{\lambda_{\nu}\right\}$ everywhere dense on Γ is a pole in the sense of the functional analysis. Consequently $M_{\chi}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$, as we wished to prove.

Remark 1. The notation $\overline{\left\{\lambda_{\nu}\right\}}$ in the statement of Theorem 43 denotes the closure of $\left\{\lambda_{\nu}\right\}$.

Theorem 44. Let $T(\lambda)$ and σ be the same notations as those in Theorem 43, and $M_{T}(\rho)$ the maximum modulus of $T(\lambda)$ on the circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$. If the ordinary part $R(\lambda)$ of $T(\lambda)$ is a constant, then

$$
\begin{aligned}
& M_{T}\left(\rho^{\prime}\right) \leqq M_{T}(\rho) \quad\left(\sigma<\rho<\rho^{\prime}<\infty\right), \\
& M_{T}(\rho) \rightarrow \infty
\end{aligned} \quad(\rho \rightarrow \sigma) ; \text {, }
$$

and if, contrary to it, $R(\lambda)$ is an integral function, then there exists a suitable positive constant ρ_{0} such that the inequality $M_{T}\left(\rho^{\prime}\right) \leqq M_{T}(\rho)$
holds for every pair of positive constants ρ, ρ^{\prime} with $\sigma<\rho<\rho^{\prime}<\rho_{0}<\infty$, and also $M_{T}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$.

Proof. If $R(\lambda)$ is a constant c, then, as can be found immediately from the earlier discussion,

$$
T\left(\frac{\rho}{\kappa} e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t \quad(\sigma<\rho<\infty, 0<\kappa<1)
$$

and hence $M_{T}\left(\rho^{\prime}\right) \leqq M_{T}(\rho)$ for every pair of ρ, ρ^{\prime} with $\sigma<\rho<\rho^{\prime}<\infty$. since, moreover, $T(\lambda)=c+\chi(\lambda), M_{T}(\rho) \geqq M_{\chi}(\rho)-|c|$. Thus it is a direct consequence of the preceding theorem that $M_{T}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$.

We next consider the case where $R(\lambda)$ is a polynomial in λ or a transcendental integral function.

In the first place it follows from the equality $T(\lambda)=R(\lambda)+\chi(\lambda)$ that

$$
\begin{align*}
M_{\chi}(\rho)-M_{R}(\rho) \leqq M_{T}(\rho) \leqq & M_{x}(\rho)+M_{R}(\rho) \tag{39}\\
& \left(\sigma<\rho<\infty, M_{R}(\rho)=\max _{\theta}\left|R\left(\rho e^{i \theta}\right)\right|\right) .
\end{align*}
$$

On the other hand, since $M_{x}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$ and since $M_{R}(\rho)$ decreases monotonously as ρ tends to σ, there exist suitable positive constants $\rho_{0}, \rho_{0}^{\prime}$ with $\sigma<\rho_{0}<\rho_{0}^{\prime}<\infty$ such that $M_{x}\left(\rho_{0}^{\prime}\right)+M_{R}\left(\rho_{0}^{\prime}\right) \leqq$ $M_{\chi}\left(\rho_{0}\right)-M_{R}\left(\rho_{0}\right)$ and hence $M_{T}\left(\rho_{0}^{\prime}\right) \leqq M_{T}\left(\rho_{0}\right)$. In fact, the inequality $M_{\chi}\left(\rho_{0}^{\prime}\right)+M_{R}\left(\rho_{0}^{\prime}\right) \leqq M_{\chi}\left(\rho_{0}\right)-M_{R}\left(\rho_{0}\right)$ holds provided that ρ_{0} is chosen suitably near to σ in comparison with ρ_{0}^{\prime}. Suppose now that the annular closed domains $\left\{\lambda: \rho_{0} \leqq|\lambda| \leqq \rho_{0}^{\prime}\right\}$ and $\left\{\lambda: \rho \leqq|\lambda| \leqq \rho_{0}^{\prime}\right\}$ with $\sigma<\rho<\rho_{0}<\rho_{0}^{\prime}<\infty$ are mapped by the transformation $w=T(\lambda)$ onto $\Delta\left(\rho_{0}, \rho_{0}^{\prime}\right)$ and $\Delta\left(\rho, \rho_{0}^{\prime}\right)$ in the complex w-plane respectively. Then $\Delta\left(\rho_{0}, \rho_{0}^{\prime}\right) \subset \Delta\left(\rho, \rho_{0}^{\prime}\right)$ and $\Delta\left(\rho, \rho_{0}^{\prime}\right)$ here enlarges outwards as ρ decreases to σ. As a result, it is found from the principle of the maximum modulus for a regular function that $M_{T}\left(\rho_{0}\right) \leqq M_{T}(\rho)$ for every ρ with $\sigma<\rho<\rho_{0}$. By following the argument used above, we can therefore establish the inequality $M_{T}\left(\rho^{\prime}\right) \leqq M_{T}(\rho)$ holding for every pair of ρ, ρ^{\prime} with $\sigma<\rho<\rho^{\prime}<\rho_{0}$. Furthermore it is at once obvious from (39) and the preceding theorem that $M_{T}(\rho) \rightarrow \infty(\rho \rightarrow \sigma)$.

With these results the present theorem has been proved.
Remark 2. The results in Theorems 43 and 44 are valid, of course, for the function $\hat{T}(\lambda)$ treated in Theorems 41 and 42 [cf. Proc. Japan Acad., Vol. 41, No. 2, 150-154 (1965)].

On the assumption that $R(\lambda)$ is not a constant, we shall next treat of the relation among $M_{R}(\rho), M_{\chi}(\rho)$, and the coefficients of a_{μ}, b_{μ} ($\mu=1,2,3 \cdots$). The following theorem concerning it is, in particular, significant for sufficiently large values of ρ from a point of view of the fact that

$$
\left.\begin{array}{l}
M_{R}(\rho) \rightarrow \infty \\
M_{x}(\rho) \rightarrow 0
\end{array}\right\} \quad(\rho \rightarrow \infty)
$$

Theorem 45. Let $T(\lambda)$ and σ be the same notations as before; and let the ordinary part $R(\lambda)$ of $T(\lambda)$ be an integral function, not a constant; and let $K_{\mu}=a_{\mu}^{2}(\rho)+b_{\mu}^{2}(\rho)$, where $a_{\mu}(\rho)$ and $b_{\mu}(\rho)$ are the coefficients defined before. Then K_{μ} is independent of values of ρ as far as ρ satisfies the condition $\sigma<\rho<\infty$; and moreover

$$
\left|\sum_{\mu \geq 1} K_{\mu}\right| \leqq 4 M_{R}(\rho) M_{\chi}(\rho) \quad \text { (for every } \rho \text { with } \sigma<\rho<\infty \text {) }
$$

where $\sum_{\mu \geq 1} K_{\mu}$ is a finite or an infinite series according as $R(\lambda)$ is a polynomial in λ or a transcendental integral function.

Proof. As already pointed out, $a_{\mu}\left(\frac{\rho}{\kappa}\right)+i b_{\mu}\left(\frac{\rho}{\kappa}\right)=\left(a_{\mu}(\rho)+i b_{\mu}(\rho)\right) \kappa^{\mu}$ $(\sigma<\rho<\infty, 0<\kappa<1)$; and similarly $a_{\mu}\left(\frac{\rho}{\kappa}\right)-i b_{\mu}\left(\frac{\rho}{\kappa}\right)=\left(a_{\mu}(\rho)-i b_{\mu}(\rho)\right) \kappa^{-\mu}$. Accordingly $a_{\mu}^{2}\left(\frac{\rho}{\kappa}\right)+b_{\mu}^{2}\left(\frac{\rho}{\kappa}\right)=a_{\mu}^{2}(\rho)+b_{\mu}^{2}(\rho)$ for every ρ with $\sigma<\rho<\infty$ and for every κ with $0<\kappa<1$. This result implies that $a_{\mu}^{2}(\rho)+b_{\mu}^{2}(\rho)$ is a constant independent of values of ρ as far as ρ satisfies the condition $\sigma<\rho<\infty$. If we now denote by K_{μ} this constant depending only on μ, an application of the expansions of $R\left(\frac{\rho}{\kappa} e^{i \theta}\right)$ and $\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right)$ yields the equality

$$
\frac{1}{4} \sum_{\mu \geq 1} K_{\mu}=\frac{1}{2 \pi} \int_{0}^{2 \pi} R\left(\frac{\rho}{\kappa} e^{i t}\right) \chi\left(\frac{\rho}{\kappa} e^{i t}\right) d t \quad(\sigma<\rho<\infty, 0<\kappa<1)
$$

and hence the inequality

$$
\frac{1}{4}\left|\sum_{\mu \geq 1} K_{\mu}\right| \leqq M_{R}(\rho) M_{x}(\rho) \quad(\sigma<\rho<\infty)
$$

on the assumption that $R(\lambda)$ is not a constant. Since, in addition,

$$
\begin{aligned}
\frac{a_{\mu}(\rho)-i b_{\mu}(\rho)}{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) e^{-i \mu t} d t \\
& =\frac{\rho^{\mu}}{2 \pi i} \int_{0} \frac{T(\lambda)}{\lambda^{\mu+1}} d \lambda \\
& =\frac{\rho^{\mu} R^{(\mu)}(0)}{\mu!}
\end{aligned}
$$

it is found that $\sum_{\mu \geqq 1} K_{\mu}$ is a finite series as far as $R(\lambda)$ is a polynomial in λ. Since, however, the expansion of $R\left(\frac{\rho}{\kappa} e^{i \theta}\right)$ is an infinite series provided that $R(\lambda)$ is a transcendental integral function, and since the expansion of $\chi\left(\frac{\rho}{\kappa} e^{i \theta}\right)$ is also an infinite series as already indicated, $\sum_{\mu \geq 1} K_{\mu}$ is an infinite series under this condition on $R(\lambda)$.

The proof of the theorem has thus been finished.

Remark 3. Even if $R(\lambda)$ is a transcendental integral function, $\sum_{\mu \geq 1}\left|K_{\mu}\right|$ also converges by virtue of the fact that the expansions of $R(\lambda)$ and $\chi(\lambda)$ both converge absolutely in the domain $\{\lambda: \sigma<|\lambda|<\infty\}$. In addition, the result of Theorem 45 is rewritten in the form of

$$
\left|\sum_{\mu \geq 1} \frac{R^{(\mu)}(0) C_{-\mu}}{\mu!}\right| \leqq M_{R}(\rho) M_{\chi}(\rho) \quad(\sigma<\rho<\infty),
$$

where $C_{-\mu}$ is the notation used in the course of the proof of Theorem 43.

