204. Decompositions of Generalized Algebras. II

By F. M. Sioson
Department of Mathematics, University of Florida
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)

Theorem 3. Every genalgebra $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$ with finitary operations is isomorphic with a subdirect product of subdirectly irreducible genalgebras.

Proof. Consider arbitrary elements $x, y \in G, a, b \in A$ such that $x \neq y$ and $a \neq b$. Let $\mathcal{L}(x, y ; a, b)$ be the family of all reduced congruences (θ, φ) of $\mathcal{L}(x, y ; a, b)$ such that

$$
(x, y) \notin \theta \quad \text { and } \quad(a, b) \notin \varphi .
$$

Since $\left(\Delta_{G}, \Delta_{A}\right) \in \mathcal{L}(x, y ; a, b)$, then $\mathcal{L}(x, y ; a, b) \neq \varnothing$. It is partially ordered and every linearly ordered subset of it possesses an upper bound given by its join. Hence, by Zorn's lemma, $\mathcal{L}(x, y ; a, b)$ has a maximal element $\left(\theta_{x y}, \varphi_{a b}\right)$. To show that the quotient genalgebra

$$
\mathfrak{S} /\left(\theta_{x y}, \varphi_{a b}\right)=\left\langle G / \theta_{x y}, o_{1}, \cdots, o_{n}, A / \varphi_{a b}\right\rangle
$$

is subdirectly irreducible, it suffices to show that it has no proper reduced congruences and hence no proper congruences. If it does possess proper reduced congruences, let $\left(\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda}\right)(\lambda \in \Lambda)$ be the family of all reduced congruences in $\mathbb{S} /\left(\theta_{x y}, \varphi_{a b}\right)$. By Theorem C each such congruence ($\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda}$) corresponds to a reduced congruence ($\theta_{\lambda}, \varphi_{\lambda}$) in \mathfrak{S} such that

$$
\left(\theta_{\lambda}, \varphi_{\lambda}\right) \supsetneqq\left(\theta_{x y}, \varphi_{a b}\right) .
$$

Clearly, $\theta_{\lambda} \supsetneqq \theta_{x y}$ for all $\lambda \in \Lambda$; for, if $\theta_{\lambda}=\theta_{x y}$, then $\varphi_{\lambda}=\varphi_{a b}$, since both congruences are reduced. Thus we have $\cap \theta_{\lambda} \supsetneqq \theta_{x y}$ and in any case

$$
\bigcap_{\lambda \in \Lambda}\left(\theta_{\lambda}, \varphi_{\lambda}\right) \supsetneqq\left(\theta_{x y}, \varphi_{a b}^{\lambda \in \Lambda}\right) .
$$

The reduction

$$
\bigcap_{\lambda \in A}\left(\theta_{\lambda}, \varphi\right)
$$

of the congruence on the left side must properly contain the congruence on the right side; for, if $\varphi \varsubsetneqq \varphi_{a b}$, then

$$
\left(\bigcap_{\lambda \in A} \theta_{\lambda}, \varphi\right) \cap\left(\theta_{x y}, \varphi_{a b}\right)=\left(\bigcap_{\lambda \in A} \theta_{\lambda} \cap \theta_{x y}, \varphi \cap \varphi_{x y}\right)=\left(\theta_{x y}, \varphi\right)
$$

contrary to the fact that $\left(\theta_{x y}, \varphi_{a b}\right)$ is reduced. Whence the genalgebra $\mathfrak{S} /\left(\theta_{x y}, \varphi_{a b}\right)$ is subdirectly irreducible. Obviously,

$$
\bigcap_{x \neq y} \bigcap_{a \neq b}\left(\theta_{x y}, \varphi_{a b}\right)=\left(\bigcap_{x \neq y} \theta_{x y}, \bigcap_{a \neq b} \varphi_{a b}\right)=\left(\Delta_{G}, \Delta_{\Lambda}\right)
$$

and therefore the final conclusion follows.
Theorem 4. The necessary and sufficient conditions for a genalgebra $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$ to be isomorphic to a direct product of genalgebras $\mathbb{S}_{\lambda}=\left\langle G_{\lambda}, o_{1}^{\lambda}, \cdots, o_{n}^{\lambda}, A_{\lambda}\right\rangle(\lambda \in \Lambda)$ are that (1) there exists
for each $\lambda \in \Lambda$ a homomorphism $\left(h_{\lambda}, k_{\lambda}\right)$ of \mathfrak{S} onto \mathfrak{S}_{λ} whose kernels $\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(h_{\lambda} h_{\lambda}^{-1}, k_{\lambda} k_{\lambda}^{-1}\right)$ satisfy the condition

$$
\bigcap_{\lambda \in A}\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(\Delta_{G}, \Delta_{A}\right) ; \quad \text { and }
$$

(2) for each pair of subsets $\left\{x_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq G$ and $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq A$, there exist elements $x \in G$ and $a \in A$ such that

$$
\left(x, x_{\lambda}\right) \in \theta_{\lambda} \quad \text { and } \quad\left(a, a_{\lambda}\right) \in \varphi_{\lambda}
$$

for all $\lambda \in \Lambda$.
Proof. If \mathfrak{S} is isomorphic onto $\prod_{\lambda \in \Lambda} \mathfrak{S}_{\lambda}$ under (f, g), then clearly condition (1) holds. To prove condition (2), consider any $\left\{x_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq G$. Let $\chi \in \prod_{\lambda \in A} \mathfrak{S}_{\lambda}$ such that $\chi(\lambda)=f\left(x_{\lambda}\right)(\lambda)$ for $\lambda \in \Lambda$. Let $x \in G$ such that $f(x)=\chi$. Then $f(x)(\lambda)=\chi(\lambda)=f\left(x_{\lambda}\right)(\lambda)$ and hence $h_{\lambda}(x)=p_{\lambda} f(x)=$ $p_{\lambda} f\left(x_{\lambda}\right)=h_{\lambda}\left(x_{\lambda}\right)$ for $\lambda \in \Lambda$. Thus, $\left(x, x_{\lambda}\right) \in \theta_{\lambda}$ for all $\lambda \in \Lambda$. In an analogous manner, there exists an $a \in A$ such that (a, a_{λ}) $\in \varphi_{\lambda}$ for all $\lambda \in \Lambda$.

Conversely, suppose conditions (1) and (2) hold. By Theorem 1, \mathfrak{S} is isomorphic to a subgenalgebra of the direct product $\prod_{\lambda \in A} \subseteq /\left(\theta_{\lambda}, \varphi_{\lambda}\right)$ under (f, g) such that

$$
f(x)(\lambda)=x / \theta_{\lambda} \quad \text { and } \quad g(a)(\lambda)=a / \varphi_{\lambda}
$$

where $\theta_{\lambda}=h_{\lambda} h_{\lambda}^{-1}$ and $\varphi_{\lambda}=k_{\lambda} k_{\lambda}$. Thus, it suffices to show that both f and g are onto. Let $\chi \in \prod_{\lambda \in 1} \Im /\left(\theta_{\lambda}, \varphi_{\lambda}\right)$ such that

$$
\chi(\lambda)=x_{\lambda} / \theta_{\lambda} \quad \text { for } \quad \lambda \in \Lambda .
$$

Corresponding to $\left\{x_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq G$, by (2), there exists an element $x \in G$ such that $\left(x, x_{\lambda}\right) \in \theta_{\lambda}$, in other words, $x / \theta_{\lambda}=x_{\lambda} / \theta_{\lambda}$ for $\lambda \in \Lambda$. Whence $f(x)=\chi$. Similarly for g.

Corollary 5. There exists a one-to-one correspondence between the direct product representations of a genalgebra \mathfrak{S} and the collection of all sets of congruences $\left\{\left(\theta_{\lambda}, \varphi_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ of \subseteq satisfying the conditions
(1) $\bigcap_{\lambda \in A}\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(\Delta_{G}, \Delta_{A}\right)$;
(2) for $\left\{x_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq G$ and $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq A$, there are elements $x \in G$ and $a \in A$ such that

$$
\left(x, x_{\lambda}\right) \in \theta_{\lambda} \quad \text { and } \quad\left(a, a_{\lambda}\right) \in \varphi_{\lambda}
$$

for $\lambda \in \Lambda$.
Theorem 6. A necessary and sufficient condition for a genalgebra \mathfrak{S} to be directly reducible is that there exist two congruences $\left(\theta_{1}, \varphi_{1}\right) \neq\left(\Delta_{\theta}, \Delta_{A}\right)$ and $\left(\theta_{2}, \varphi_{2}\right) \neq\left(\Delta_{G}, \Delta_{A}\right)$ such that
(1) $\theta_{1} \theta_{2}=\theta_{2} \theta_{1}$ and $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{1}$;
(2) $\left(\theta_{1}, \varphi_{1}\right) \vee\left(\theta_{2}, \varphi_{2}\right)=(G \times G, A \times A)$;
(3) $\left(\theta_{1}, \varphi_{1}\right) \cap\left(\theta_{2}, \varphi_{2}\right)=\left(\Delta_{G}, \Delta_{4}\right)$.

Under these conditions

$$
\mathfrak{S} \cong \mathfrak{S} /\left(\theta_{1}, \varphi_{1}\right) \times \mathbb{S} /\left(\theta_{2}, \varphi_{2}\right) .
$$

Proof. First suppose \mathfrak{S} is isomorphic to $\mathfrak{S}_{1} \times \mathfrak{S}_{2}$ under (f, g) such that $f(x)=\left(x_{1}, x_{2}\right)$ and $g(a)=\left(a_{1}, a_{2}\right)$, where the homomorphisms $\left(h_{\lambda}, k_{\lambda}\right)$ defined by $h_{\lambda}(x)=x_{\lambda}$ and $k_{\lambda}(\alpha)=a_{\lambda}$ are non-isomorphisms. This means $\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(h_{\lambda} h_{\lambda}^{-1}, k_{\lambda} k_{\lambda}^{-1}\right) \neq\left(\Delta_{G}, \Delta_{A}\right)$. Let $x, y \in G$ such that $f(x)=\left(x_{1}, x_{2}\right)$ and $f(y)=\left(y_{1}, y_{2}\right)$. Then

$$
\left(f^{-1}\left(x_{1}, x_{2}\right), f^{-1}\left(x_{1}, y_{2}\right)\right) \in \theta_{1} \quad \text { and } \quad\left(f^{-1}\left(x_{1}, y_{2}\right), f^{-1}\left(y_{1}, y_{2}\right)\right) \in \theta_{2}
$$

Hence $(x, y)=\left(f^{-1}\left(x_{1}, x_{2}\right), f^{-1}\left(y_{1}, y_{2}\right)\right) \in \theta_{1} \theta_{2}$. Thus, $\theta_{1} \theta_{2}=G \times G$ and similarly $\theta_{2} \theta_{1}=G \times G$. Whence $\theta_{1} \theta_{2}=\theta_{2} \theta_{1} \quad$ The same conclusion may be derived for φ_{1} and φ_{2}. Therefore,

$$
\left(\theta_{1}, \varphi_{1}\right) \vee\left(\theta_{2}, \varphi_{2}\right)=\left(\theta_{1} \vee \theta_{2}, \varphi_{1} \vee \varphi_{2}\right)=\left(\theta_{1} \theta_{2}, \varphi_{1} \varphi_{2}\right)=(G \times G, A \times A)
$$

If $(x, y) \in \theta_{1} \cap \theta_{2}$, so that $(x, y) \in \theta_{1}$ and $(x, y) \in \theta_{2}$, then $x_{1}=y_{1}$ and $x_{2}=y_{2}$. Since f is one-to-one, then $x=y$ or $(x, y) \in \Delta_{G}$. Hence $\theta_{1} \cap \theta_{2}=$ Δ_{θ} and in an analogous manner, $\varphi_{1} \cap \varphi_{2}=\Delta_{A}$. The conclusion follows.

Conversely, suppose ($\left.\theta_{i}, \varphi_{i}\right)(i=1,2)$ are non-trivial congruences satisfying (1) and (2). Consider the product genalgebra $\mathbb{S} /\left(\theta_{1}, \varphi_{1}\right) \times$ $\mathfrak{S} /\left(\theta_{2}, \varphi_{2}\right)=\left\langle G / \theta_{1} \times G / \theta_{2}, O_{1}, \cdots, O_{n}, A / \varphi_{1} \times A / \varphi_{2}\right\rangle$ and define $f: G \Rightarrow G / \theta_{1} \times$ G / θ_{2} and $g: A \Rightarrow A / \varphi_{1} \times A / \varphi_{2}$ such that $f(x)=\left(x / \theta_{1}, x / \theta_{2}\right)$ and $g(\alpha)=$ $\left(a / \varphi_{1}, a / \varphi_{2}\right)$. The pair (f, g) is clearly a homomorphism, for, if $i=1, \cdots, n$ and $x_{1}, \cdots, x_{m_{i}} \in G$, then

$$
\begin{aligned}
g\left(o _ { i } \left(x_{1},\right.\right. & \left.\left.\cdots, x_{m_{i}}\right)\right)=\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right) / \varphi_{1}, o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right) / \varphi_{2}\right) \\
& =\left(O_{i}^{1}\left(x_{1} / \theta_{1}, \cdots, x_{m_{i}} / \theta_{1}\right), O_{i}^{2}\left(x_{1} / \theta_{2}, \cdots, x_{m_{i}} / \theta_{2}\right)\right) \\
& =O_{i}\left(\left(x_{1} / \theta_{1}, x_{1} / \theta_{2}\right), \cdots,\left(x_{m_{i}} / \theta_{1}, x_{m_{i}} / \theta_{2}\right)\right)=O_{i}\left(f\left(x_{1}\right), \cdots, f\left(x_{m_{i}}\right)\right) .
\end{aligned}
$$

If $\left(x / \theta_{1}, x / \theta_{2}\right)=\left(y / \theta_{1}, y / \theta_{2}\right)$, so that $(x, y) \in \theta_{1}$ and $(x, y) \in \theta_{2}$, then $(x, y) \in \theta_{1} \cap \theta_{2}=\Delta_{G}$. Whence $x=y$. Finally, if $\left(x_{1} / \theta_{1}, x_{2} / \theta_{2}\right) \in G / \theta_{1} \times G / \theta_{2}$, then, inasmuch as $G \times G=\theta_{1} \vee \theta_{2}=\theta_{1} \theta_{2}$, there exists an $x \in G$ such that

$$
\left(x, x_{1}\right) \in \theta_{1} \quad \text { and } \quad\left(x, x_{2}\right) \in \theta_{2} .
$$

Thus, $\left(x_{1} / \theta_{1}, x_{2} / \theta_{2}\right)=\left(x / \theta_{1}, x / \theta_{2}\right)=f(x)$. Therefore, f (and similarly g) is onto. The proof is now complete.

For convenience, let us call a family of congruences in a genalgebra permutable if and only if for each pair $\left(\theta_{1}, \varphi_{1}\right)$ and $\left(\theta_{2}, \varphi_{2}\right)$ of the family we have $\theta_{1} \theta_{2}=\theta_{2} \theta_{1}$ and $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{1}$.

Theorem 7. Let \mathfrak{S} be a genalgebra with permutable congruences. Then \mathfrak{S} is isomorphic with a direct product of the genalgebras $\mathfrak{S}_{j}=\left\langle G_{j}, o_{1}^{j}, \cdots, o_{n}^{j}, A_{j}\right\rangle(j=1, \cdots, m)$ if and only if for each $j=1, \cdots, m$, there exists a homomorphism (h_{λ}, k_{λ}) of \mathfrak{S} onto \mathfrak{S}_{j} whose kernels $\left(\theta_{j}, \varphi_{j}\right)=\left(h_{j} h_{j}^{-1}, k_{j} k_{j}^{-1}\right)$ satisfy the conditions
(1) $\bigcap_{j=1}^{m}\left(\theta_{j}, \varphi_{j}\right)=\left(\Delta_{G}, \Delta_{A}\right)$;
(2) $\bigcap_{j=1}^{k-1}\left(\theta_{j}, \varphi_{j}\right) \vee\left(\theta_{k}, \varphi_{k}\right)=(G \times G, A \times A)$
for each $k=2,3, \cdots, m$.

Proof. Suppose \mathfrak{C} is isomorphic to $\prod_{j=1}^{m} \mathfrak{S}_{j}$ under (f, g). Let $\left(p_{j}, q_{j}\right): \prod_{j=1}^{m} \mathfrak{S}_{j} \Rightarrow \mathfrak{S}_{j}$ denote the projection homomorphisms such that $p_{j}\left(x_{1}, \cdots, x_{m}\right)=x_{j}$ and $q_{j}\left(a_{1}, \cdots, a_{m}\right)=a_{j}$. For $j=1, \cdots, m$, let $h_{j}=$ $p_{j} f$ and $k_{j}=q_{j} g$. Then, obviously $h_{j}(G)=G_{j}$ and $k_{j}(A)=A_{j}$. If $\left(x, x^{\prime}\right) \in \bigcap_{j=1}^{m} \theta_{j}$, so that $h_{j}(x)=p_{j}(f(x))=p_{j}\left(f\left(x^{\prime}\right)\right)=h_{j}\left(x^{\prime}\right)$ for $j=1, \cdots$, m, then $f(x)=f\left(x_{m}^{\prime}\right)$. Thus, $x=x^{\prime}$ or $\left(x, x^{\prime}\right) \in \Delta_{G}$. Therefore $\bigcap_{j=1}^{m} \theta_{j}=\Delta_{G}$ and similarly $\bigcap_{j=1}^{m} \varphi_{j}=\Delta_{4}$. Let $\left(x, x^{\prime}\right) \in G \times G$ with $f(x)=\left(x_{1}, \cdots, x_{m}\right)$ and $f\left(x^{\prime}\right)=\left(x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right)$ and let $y \in G$ be such that $f(y)=\left(x_{1}, \cdots, x_{k-1}\right.$, $\left.x_{k}^{\prime}, \cdots\right)$ for any $k=1, \cdots, m$. Then $h_{j}(x)=p_{j} f(x)=p_{j} f(y)=h_{j}(y)$ for $j=1,2, \cdots, k-1$ and $h_{k}(y)=p_{k} f(y)=p_{k} f\left(x^{\prime}\right)=h_{k}\left(x^{\prime}\right)$. In other words, $(x, y) \in \theta_{j}$ for $\underset{k-1}{j=1}, \cdots, k-1$ and hence $(x, y) \in \bigcap_{j=1}^{k-1} \theta_{j}$ while $\left(y, x^{\prime}\right) \in \theta_{k}$. Thus, $\left(x, x_{k-1}^{\prime}\right) \in \bigcap_{j=1}^{k-1} \theta_{j_{k-1}} \vee \theta_{k}$. This means $\bigcap_{j=1}^{k-1} \theta_{j} \vee \theta_{k}=G \times G$ and in a similar manner $\bigcap_{j=1}^{n} \varphi_{j} \vee \varphi_{k}=A \times A$ for $k=2, \cdots, m$.

The converse follows by a simple induction.
Corollary 8. The representations of a genalgebra \subseteq with permutable congruences as a direct product of a finite number of genalgebras are in one-to-one correspondence with the collection of finite sets of congruences $\left\{\left(\theta_{j}, \varphi_{j}\right) \mid j=1, \cdots, m\right\}$ of \mathfrak{C} such that

$$
\begin{equation*}
\bigcap_{\substack{j=1 \\ k-1}}^{m}\left(\theta_{j}, \varphi_{j}\right)=\left(\Delta_{q}, \Delta_{\Lambda}\right) ; \tag{1}
\end{equation*}
$$

(2) $\bigcap_{j=1}^{k-1}\left(\theta_{j}, \varphi_{j}\right) \vee\left(\theta_{k}, \varphi_{k}\right)=(G \times G, A \times A)$ for each $k=2, \cdots, m$.

Theorem 9. If the congruences of a genalgebra \mathfrak{S} permute and \mathfrak{C} is isomorphic to a subdirect product of simple genalgebras $\mathfrak{S}_{j}=\left\langle G_{j}, o_{1}^{j}, \cdots, o_{n}^{j}, A_{j}\right\rangle(j=1, \cdots, m)$, i.e. genalgebras with no proper congruences, then \mathfrak{S} is also isomorphic with a direct product of some subset of $\left\{\mathscr{S}_{j} \mid j=1, \cdots, m\right\}$.

Proof. Corresponding to the simple subdirect factors $\mathfrak{S}_{j}(j=$ $1, \cdots, m$) there exist reduced congruences $\left(\theta_{j}, \varphi_{j}\right)$ in \mathscr{S} such that $\bigcap_{j=1}^{m}\left(\theta_{j}, \varphi_{j}\right)=\left(\Delta_{\theta}, \Delta_{A}\right)$ and $\mathfrak{S}_{j} \cong \mathfrak{S} /\left(\theta_{j}, \varphi_{j}\right)$. Since \mathfrak{S}_{j} are simple, then $\left(\theta_{j}, \varphi_{j}\right)$ are maximal reduced congruences. Choose a minimal subfamily of $\left\{\mathscr{S}_{j} \mid j=1, \cdots, m\right\}$ such that its corresponding congruences satisfy

$$
\bigcap_{i=1}^{r}\left(\theta_{i}, \varphi_{i}\right)=\left(\Delta_{G}, \Delta_{A}\right) .
$$

Then, for each $k=2, \cdots, m$ note that we have

$$
\bigcap_{i=1}^{k-1}\left(\theta_{j_{i}}, \varphi_{j_{i}}\right) \vee\left(\theta_{j_{k}}, \varphi_{j_{k}}\right) \geq\left(\theta_{j_{k}}, \varphi_{j_{k}}\right) .
$$

Thus, either

$$
\bigcap_{i=1}^{k-1}\left(\theta_{j_{i}}, \varphi_{j_{i}}\right) \vee\left(\theta_{j_{k}}, \varphi_{j_{k}}\right)=\left(\theta_{j_{k}}, \varphi_{j_{k}}\right)
$$

or

$$
\bigcap_{i=1}^{k-1}\left(\theta_{j_{i}}, \varphi_{j_{i}}\right) \vee\left(\theta_{j_{k}}, \varphi_{j_{k}}\right)=(G \times G, A \times A) .
$$

In the first case, then

$$
\bigcap_{i=1}^{k-1}\left(\theta_{j_{i}}, \varphi_{j_{i}}\right) \leq\left(\theta_{j_{k}}, \varphi_{j_{k}}\right)
$$

and hence by maximality,
contrary to the minimality of the set $\left\{\left(\theta_{j_{i}}, \varphi_{j_{i}}\right) \mid i=1, \cdots, r\right\}$. Whence the second condition prevails and the result follows.

Theorem 10. If the lattice of congruences of a genalgebra \subseteq is distributive and \mathfrak{S} is isomorphic to a subdirect product of the genalgebras $\left\{\mathscr{S}_{j} \mid j=1, \cdots, m\right\}$ under (f, g), then for each homomorphism (h, k) of \subseteq the genalgebra $(h, k)(\mathbb{S})=\left\langle h(G), O_{1}, \cdots, O_{n}, k(A)\right\rangle$ is also isomorphic to a subdirect product of homomorphic images of the genalgebras $\mathbb{S}_{j}(j=1, \cdots, m)$.

Proof. By hypothesis and Theorem 1, there exists congruences $\left(\theta_{j}, \varphi_{j}\right)$ such that

$$
\bigcap_{i=1}^{m}\left(\theta_{j}, \varphi_{j}\right)=\left(\Delta_{G}, \Delta_{\Lambda}\right)
$$

and

$$
\mathfrak{S}_{j} \cong \subseteq /\left(\theta_{j}, \varphi_{j}\right) .
$$

Let $\mathbb{S} /(\theta, \varphi)$ be any quotient genalgebra of \mathfrak{S} and hence any homomorphic image $(h, k)(\mathfrak{S})=\mathfrak{S} /(\theta, \varphi)$ of \mathfrak{S}. By Theorem 3, $\mathfrak{S} /(\theta, \varphi)$ is isomorphic to a subdirect product of irreducible genalgebras. Let the corresponding reduced congruences of this decomposition be given by $\left(\widetilde{\zeta}_{\mu}, \tilde{\eta}_{\mu}\right) \mu \in M$). From subdirect irreducibility, we have each of the congruences (completely) meet-irreducible. Also, each of the congruences $\left(\widetilde{\zeta}_{\mu}, \tilde{\eta}_{\mu}\right)$ corresponds to a reduced congruence $\left(\zeta_{\mu}, \eta_{\mu}\right)$ of \mathbb{C}. $\underset{m}{\text { Considering an arbitrary }} \mu \in M$, we have $\left(\zeta_{\mu}, \eta_{\mu}\right)=\left(\zeta_{\mu}, \eta_{\mu}\right) \vee \bigcap_{j=1}^{m}\left(\theta_{j}, \varphi_{j}\right)=$ $\bigcap_{j=1}^{m}\left[\left(\zeta_{\mu}, \eta_{\mu}\right) \vee\left(\theta_{j}, \varphi_{j}\right)\right]$. By meet-irreduciblity, then

$$
\left(\zeta_{\mu}, \eta_{\mu}\right)=\left(\zeta_{\mu}, \eta_{\mu}\right) \vee\left(\theta_{j_{\mu}}, \varphi_{j_{\mu}}\right)
$$

or

$$
\left(\zeta_{\mu}, \eta_{\mu}\right) \geq\left(\theta_{j_{\mu}}, \varphi_{j_{\mu}}\right) \quad \text { for some } j_{\mu}=1, \cdots, m .
$$

Let then

$$
\left(\psi_{j_{\mu}}, \omega_{j_{\mu}}\right)=\prod_{\left(\xi_{\mu}, \eta_{\mu}\right) \geq\left(j_{j_{\mu}}, \varphi_{j_{\mu}}\right)}\left(\zeta_{\mu}, \eta_{\mu}\right) .
$$

If $\Omega=\left\{\left(\psi_{j_{\mu}}, \omega_{j_{\mu}}\right) \mid \mu \in M\right\}$, then

$$
\bigcap_{\theta \in \Omega} \tilde{\Theta}=\left(\Delta_{\theta \mid \theta}, \Delta_{A \mid \varphi}\right) .
$$

Thus $\mathbb{S} /(\theta, \Psi)$ is isomorphic to a subdirect product of the genalgebras $\{(ভ /(\theta, \varphi)) / \widetilde{\Theta} \mid \theta \in \Omega\}$ or $\{\subseteq / \Theta \mid \theta \in \Omega\}$, and hence of

$$
\left.\left\{\left(\subseteq / \theta_{j_{\mu}}, \varphi_{j_{\mu}}\right)\right) /\left(\widetilde{\psi}_{j_{\mu}}, \tilde{\omega}_{j_{\mu}}\right) \mid \mu \in M\right\}
$$

which are homomorphic images of $\mathfrak{S}_{j}(j=1, \cdots, m)$. Q.E.D.

References

[1] Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Phil. Soc., 31, 433-454 (1935).
[2] Foster, A. L., and A. F. Pixley: Semi-categorical algebras. II. Mathematische Zeitschrift, 85, 169-184 (1964).
[3] Grätzer, G.: A representation theorem for multialgebras. Archiv der Mathematik, 13, 452-456 (1962).
[4] Pickett, H. E.: Subdirect representation of relational systems. Fundamenta Mathematicae, 56, 221-240 (1964).
[5] Sioson, F. M.: On generalized algebras. Notices of Amer. Math. Soc., 12, 98 (1965).
[6] Tarski, A.: Some notions on the borderline of algebra and metamathematics. Proceedings of the International Congress of Mathematicians 1950, Providence, 705-720 (1952).

