204. Decompositions of Generalized Algebras. II

By F. M. SIOSON

Department of Mathematics, University of Florida (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

Theorem 3. Every genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ with finitary operations is isomorphic with a subdirect product of subdirectly irreducible genalgebras.

Proof. Consider arbitrary elements $x, y \in G$, $a, b \in A$ such that $x \neq y$ and $a \neq b$. Let $\mathcal{L}(x, y; a, b)$ be the family of all reduced congruences (θ, φ) of $\mathcal{L}(x, y; a, b)$ such that

$$(x, y) \notin \theta$$
 and $(a, b) \notin \varphi$.

Since $(\varDelta_{a}, \varDelta_{A}) \in \mathcal{L}(x, y; a, b)$, then $\mathcal{L}(x, y; a, b) \neq \emptyset$. It is partially ordered and every linearly ordered subset of it possesses an upper bound given by its join. Hence, by Zorn's lemma, $\mathcal{L}(x, y; a, b)$ has a maximal element $(\theta_{xy}, \varphi_{ab})$. To show that the quotient genalgebra $\mathfrak{S}/(\theta_{xy}, \varphi_{ab}) = \langle G/\theta_{xy}, o_{1}, \dots, o_{n}, A/\varphi_{ab} \rangle$

is subdirectly irreducible, it suffices to show that it has no proper reduced congruences and hence no proper congruences. If it does possess proper reduced congruences, let $(\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda})$ ($\lambda \in \Lambda$) be the family of all reduced congruences in $\mathfrak{S}/(\theta_{xy}, \varphi_{ab})$. By Theorem C each such congruence $(\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda})$ corresponds to a reduced congruence $(\theta_{\lambda}, \varphi_{\lambda})$ in \mathfrak{S} such that

$$(\theta_{\lambda}, \varphi_{\lambda}) \geqq (\theta_{xy}, \varphi_{ab}).$$

Clearly, $\theta_{\lambda} \supseteq \theta_{xy}$ for all $\lambda \in \Lambda$; for, if $\theta_{\lambda} = \theta_{xy}$, then $\varphi_{\lambda} = \varphi_{ab}$, since both congruences are reduced. Thus we have $\bigcap_{\lambda \in \Lambda} \theta_{\lambda} \supseteq \theta_{xy}$ and in any case $\bigcap_{\lambda \in \Lambda} (\theta_{\lambda}, \varphi_{\lambda}) \supseteq (\theta_{xy}, \varphi_{ab})$.

The reduction

$$\bigcap_{\lambda \in A} (\theta_{\lambda}, \varphi)$$

of the congruence on the left side must properly contain the congruence on the right side; for, if $\varphi \cong \varphi_{ab}$, then

$$(\bigcap_{\lambda \in A} \theta_{\lambda}, \varphi) \cap (\theta_{xy}, \varphi_{ab}) = (\bigcap_{\lambda \in A} \theta_{\lambda} \cap \theta_{xy}, \varphi \cap \varphi_{xy}) = (\theta_{xy}, \varphi)$$

contrary to the fact that $(\theta_{xy}, \varphi_{ab})$ is reduced. Whence the genalgebra $\mathfrak{S}/(\theta_{xy}, \varphi_{ab})$ is subdirectly irreducible. Obviously,

$$\bigcap_{x \neq y} \bigcap_{a \neq b} (\theta_{xy}, \varphi_{ab}) = (\bigcap_{x \neq y} \theta_{xy}, \bigcap_{a \neq b} \varphi_{ab}) = (\varDelta_{\mathcal{G}}, \varDelta_{\mathcal{A}})$$

and therefore the final conclusion follows.

Theorem 4. The necessary and sufficient conditions for a genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ to be isomorphic to a direct product of genalgebras $\mathfrak{S}_{\lambda} = \langle G_{\lambda}, o_{1}^{\lambda}, \dots, o_{n}^{\lambda}, A_{\lambda} \rangle (\lambda \in \Lambda)$ are that (1) there exists

[Vol. 41,

for each $\lambda \in \Lambda$ a homomorphism $(h_{\lambda}, k_{\lambda})$ of \mathfrak{S} onto \mathfrak{S}_{λ} whose kernels $(\theta_{\lambda}, \varphi_{\lambda}) = (h_{\lambda}h_{\lambda}^{-1}, k_{\lambda}k_{\lambda}^{-1})$ satisfy the condition

$$\bigcap_{\lambda \in A} (\theta_{\lambda}, \varphi_{\lambda}) = (\varDelta_{g}, \varDelta_{A}); \quad and$$

(2) for each pair of subsets $\{x_{\lambda} \mid \lambda \in A\} \subseteq G$ and $\{a_{\lambda} \mid \lambda \in A\} \subseteq A$, there exist elements $x \in G$ and $a \in A$ such that

$$(x, x_{\lambda}) \in \theta_{\lambda}$$
 and $(a, a_{\lambda}) \in \varphi_{\lambda}$

for all $\lambda \in \Lambda$.

Proof. If \mathfrak{S} is isomorphic onto $\prod \mathfrak{S}_{\lambda}$ under (f, g), then clearly condition (1) holds. To prove condition (2), consider any $\{x_{\lambda} \mid \lambda \in A\} \subseteq G$. Let $\chi \in \prod \mathfrak{S}_{\lambda}$ such that $\chi(\lambda) = f(x_{\lambda})(\lambda)$ for $\lambda \in \Lambda$. Let $x \in G$ such that $f(x) = \chi$. Then $f(x)(\lambda) = \chi(\lambda) = f(x_{\lambda})(\lambda)$ and hence $h_{\lambda}(x) = p_{\lambda}f(x) = \chi$ $p_{\lambda}f(x_{\lambda}) = h_{\lambda}(x_{\lambda})$ for $\lambda \in \Lambda$. Thus, $(x, x_{\lambda}) \in \theta_{\lambda}$ for all $\lambda \in \Lambda$. In an analogous manner, there exists an $a \in A$ such that $(a, a_{\lambda}) \in \varphi_{\lambda}$ for all $\lambda \in \Lambda$.

Conversely, suppose conditions (1) and (2) hold. By Theorem 1, \mathfrak{S} is isomorphic to a subgenalgebra of the direct product $\prod_{\lambda \in \mathcal{A}} \mathfrak{S}/(\theta_{\lambda}, \varphi_{\lambda})$ under (f, g) such that

> $f(x)(\lambda) = x/\theta_{\lambda}$ and $g(a)(\lambda) = a/\varphi_{\lambda}$

where $\theta_{\lambda} = h_{\lambda} h_{\lambda}^{-1}$ and $\varphi_{\lambda} = k_{\lambda} k_{\lambda}$. Thus, it suffices to show that both f and g are onto. Let $\chi \in \prod_{\lambda \in A} \mathfrak{S}/(\theta_{\lambda}, \varphi_{\lambda})$ such that

$$\chi(\lambda) = x_{\lambda}/\theta_{\lambda}$$
 for $\lambda \in \Lambda$.

Corresponding to $\{x_{\lambda} \mid \lambda \in A\} \subseteq G$, by (2), there exists an element $x \in G$ such that $(x, x_{\lambda}) \in \theta_{\lambda}$, in other words, $x/\theta_{\lambda} = x_{\lambda}/\theta_{\lambda}$ for $\lambda \in A$. Whence $f(x) = \chi$. Similarly for g.

Corollary 5. There exists a one-to-one correspondence between the direct product representations of a genalgebra \mathfrak{S} and the collection of all sets of congruences $\{(\theta_{\lambda}, \varphi_{\lambda}) | \lambda \in A\}$ of \mathfrak{S} satisfying the conditions

 $\begin{array}{ll} (1) & \bigcap_{\lambda \in \Lambda} (\theta_{\lambda}, \varphi_{\lambda}) = (\varDelta_{\vec{\theta}}, \varDelta_{A}); \\ (2) & for \ \{x_{\lambda} \mid \lambda \in \Lambda\} \subseteq G \ and \ \{a_{\lambda} \mid \lambda \in \Lambda\} \subseteq A, \ there \ are \ elements \end{array}$ $x \in G$ and $a \in A$ such that

$$(x, x_{\lambda}) \in \theta_{\lambda}$$
 and $(a, a_{\lambda}) \in \varphi_{\lambda}$

for $\lambda \in \Lambda$.

Theorem 6. A necessary and sufficient condition for a genalgebra \mathfrak{S} to be directly reducible is that there exist two congruences $(\theta_1, \varphi_1) \neq (\Delta_G, \Delta_A)$ and $(\theta_2, \varphi_2) \neq (\Delta_G, \Delta_A)$ such that

(1) $\theta_1 \theta_2 = \theta_2 \theta_1$ and $\varphi_1 \varphi_2 = \varphi_2 \varphi_1$;

- $(2) \quad (\theta_1, \varphi_1) \vee (\theta_2, \varphi_2) = (G \times G, A \times A):$
- $(3) \quad (\theta_1, \varphi_1) \cap (\theta_2, \varphi_2) = (\varDelta_G, \varDelta_A).$

Under these conditions

 $\mathfrak{S} \cong \mathfrak{S}/(\theta_1, \varphi_1) \times \mathfrak{S}/(\theta_2, \varphi_2).$

Proof. First suppose \mathfrak{S} is isomorphic to $\mathfrak{S}_1 \times \mathfrak{S}_2$ under (f, g) such that $f(x) = (x_1, x_2)$ and $g(a) = (a_1, a_2)$, where the homomorphisms (h_λ, k_λ) defined by $h_\lambda(x) = x_\lambda$ and $k_\lambda(a) = a_\lambda$ are non-isomorphisms. This means $(\theta_\lambda, \varphi_\lambda) = (h_\lambda h_\lambda^{-1}, k_\lambda k_\lambda^{-1}) \neq (\mathcal{A}_G, \mathcal{A}_A)$. Let $x, y \in G$ such that $f(x) = (x_1, x_2)$ and $f(y) = (y_1, y_2)$. Then

 $(f^{-1}(x_1, x_2), f^{-1}(x_1, y_2)) \in \theta_1$ and $(f^{-1}(x_1, y_2), f^{-1}(y_1, y_2)) \in \theta_2$. Hence $(x, y) = (f^{-1}(x_1, x_2), f^{-1}(y_1, y_2)) \in \theta_1 \theta_2$. Thus, $\theta_1 \theta_2 = G \times G$ and similarly $\theta_2 \theta_1 = G \times G$. Whence $\theta_1 \theta_2 = \theta_2 \theta_1$ The same conclusion may be derived for φ_1 and φ_2 . Therefore,

 $(\theta_1, \varphi_1) \lor (\theta_2, \varphi_2) = (\theta_1 \lor \theta_2, \varphi_1 \lor \varphi_2) = (\theta_1 \theta_2, \varphi_1 \varphi_2) = (G \times G, A \times A).$ If $(x, y) \in \theta_1 \cap \theta_2$, so that $(x, y) \in \theta_1$ and $(x, y) \in \theta_2$, then $x_1 = y_1$ and $x_2 = y_2$. Since f is one-to-one, then x = y or $(x, y) \in \Delta_G$. Hence $\theta_1 \cap \theta_2 = \Delta_G$ and in an analogous manner, $\varphi_1 \cap \varphi_2 = \Delta_A$. The conclusion follows.

Conversely, suppose (θ_i, φ_i) (i=1, 2) are non-trivial congruences satisfying (1) and (2). Consider the product genalgebra $\mathfrak{S}/(\theta_1, \varphi_1) \times$ $\mathfrak{S}/(\theta_2, \varphi_2) = \langle G/\theta_1 \times G/\theta_2, O_1, \dots, O_n, A/\varphi_1 \times A/\varphi_2 \rangle$ and define $f: G \Rightarrow G/\theta_1 \times$ G/θ_2 and $g: A \Rightarrow A/\varphi_1 \times A/\varphi_2$ such that $f(x) = (x/\theta_1, x/\theta_2)$ and g(a) = $(a/\varphi_1, a/\varphi_2)$. The pair (f, g) is clearly a homomorphism, for, if $i=1, \dots, n$ and $x_1, \dots, x_{m_i} \in G$, then

$$\begin{split} g(o_i(x_1, \cdots, x_{m_i})) &= (o_i(x_1, \cdots, x_{m_i})/\varphi_1, o_i(x_1, \cdots, x_{m_i})/\varphi_2) \\ &= (O_i^1(x_1/\theta_1, \cdots, x_{m_i}/\theta_1), O_i^2(x_1/\theta_2, \cdots, x_{m_i}/\theta_2)) \\ &= O_i((x_1/\theta_1, x_1/\theta_2), \cdots, (x_{m_i}/\theta_1, x_{m_i}/\theta_2)) = O_i(f(x_1), \cdots, f(x_{m_i})). \end{split}$$

If $(x/\theta_1, x/\theta_2) = (y/\theta_1, y/\theta_2)$, so that $(x, y) \in \theta_1$ and $(x, y) \in \theta_2$, then $(x, y) \in \theta_1 \cap \theta_2 = \Delta_G$. Whence x = y. Finally, if $(x_1/\theta_1, x_2/\theta_2) \in G/\theta_1 \times G/\theta_2$, then, inasmuch as $G \times G = \theta_1 \vee \theta_2 = \theta_1 \theta_2$, there exists an $x \in G$ such that $(x, x_1) \in \theta_1$ and $(x, x_2) \in \theta_2$.

Thus, $(x_1/\theta_1, x_2/\theta_2) = (x/\theta_1, x/\theta_2) = f(x)$. Therefore, f (and similarly g) is onto. The proof is now complete.

For convenience, let us call a family of congruences in a genalgebra *permutable* if and only if for each pair (θ_1, φ_1) and (θ_2, φ_2) of the family we have $\theta_1\theta_2=\theta_2\theta_1$ and $\varphi_1\varphi_2=\varphi_2\varphi_1$.

Theorem 7. Let \mathfrak{S} be a genalgebra with permutable congruences. Then \mathfrak{S} is isomorphic with a direct product of the genalgebras $\mathfrak{S}_j = \langle G_j, o_1^j, \cdots, o_n^j, A_j \rangle$ $(j=1, \cdots, m)$ if and only if for each $j=1, \cdots, m$, there exists a homomorphism $(h_{\lambda}, k_{\lambda})$ of \mathfrak{S} onto \mathfrak{S}_j whose kernels $(\theta_j, \varphi_j) = (h_j h_j^{-1}, k_j k_j^{-1})$ satisfy the conditions

 $(1) \quad \bigcap_{j=1}^{m} (\theta_{j}, \varphi_{j}) = (\mathcal{\Delta}_{G}, \mathcal{\Delta}_{A});$ $(2) \quad \bigcap_{j=1}^{k-1} (\theta_{j}, \varphi_{j}) \vee (\theta_{k}, \varphi_{k}) = (G \times G, A \times A)$ for each $k=2, 3, \cdots, m$.

No. 10]

F. M. SIOSON

Proof. Suppose \mathfrak{S} is isomorphic to $\prod_{j=1}^{m} \mathfrak{S}_{j}$ under (f, g). Let (p_{j}, q_{j}) : $\prod_{j=1}^{m} \mathfrak{S}_{j} \Rightarrow \mathfrak{S}_{j}$ denote the projection homomorphisms such that $p_{j}(x_{1}, \dots, x_{m}) = x_{j}$ and $q_{j}(a_{1}, \dots, a_{m}) = a_{j}$. For $j = 1, \dots, m$, let $h_{j} = p_{j}f$ and $k_{j} = q_{j}g$. Then, obviously $h_{j}(G) = G_{j}$ and $k_{j}(A) = A_{j}$. If $(x, x') \in \bigcap_{j=1}^{m} \theta_{j}$, so that $h_{j}(x) = p_{j}(f(x)) = p_{j}(f(x')) = h_{j}(x')$ for $j = 1, \dots, m$, then f(x) = f(x'). Thus, x = x' or $(x, x') \in \Delta_{G}$. Therefore $\bigcap_{j=1}^{m} \theta_{j} = \Delta_{G}$ and similarly $\bigcap_{j=1}^{m} \varphi_{j} = \Delta_{A}$. Let $(x, x') \in G \times G$ with $f(x) = (x_{1}, \dots, x_{m})$ and $f(x') = (x'_{1}, \dots, x'_{m})$ and let $y \in G$ be such that $f(y) = (x_{1}, \dots, x_{k-1}, x'_{k}, \dots)$ for any $k = 1, \dots, m$. Then $h_{j}(x) = p_{j}f(x) = p_{j}f(y) = h_{j}(y)$ for $j = 1, 2, \dots, k-1$ and $h_{k}(y) = p_{k}f(y) = p_{k}f(x') = h_{k}(x')$. In other words, $(x, y) \in \theta_{j}$ for $j = 1, \dots, k-1$ and hence $(x, y) \in \bigcap_{j=1}^{k-1} \theta_{j}$ while $(y, x') \in \theta_{k}$. Thus, $(x, x') \in \bigcap_{j=1}^{k-1} \theta_{j-1} \vee \theta_{k}$. This means $\bigcap_{j=1}^{k-1} \theta_{j} \vee \theta_{k} = G \times G$ and in a similar manner $\bigcap_{j=1}^{k-1} \varphi_{j} \vee \varphi_{k} = A \times A$ for $k = 2, \dots, m$.

The converse follows by a simple induction.

Corollary 8. The representations of a genalgebra \mathfrak{S} with permutable congruences as a direct product of a finite number of genalgebras are in one-to-one correspondence with the collection of finite sets of congruences $\{(\theta_j, \varphi_j) | j=1, \dots, m\}$ of \mathfrak{S} such that

(1)
$$\bigcap_{j=1}^{m} (\theta_j, \varphi_j) = (\Delta_G, \Delta_A);$$

(2) $\bigcap_{j=1}^{k-1} (\theta_j, \varphi_j) \vee (\theta_k, \varphi_k) = (G \times G, A \times A) \text{ for each } k=2, \cdots, m.$

Theorem 9. If the congruences of a genalgebra \mathfrak{S} permute and \mathfrak{S} is isomorphic to a subdirect product of simple genalgebras $\mathfrak{S}_{j} = \langle G_{j}, o_{i}^{j}, \dots, o_{n}^{j}, A_{j} \rangle (j=1, \dots, m)$, i.e. genalgebras with no proper congruences, then \mathfrak{S} is also isomorphic with a direct product of some subset of $\{\mathfrak{S}_{j} | j=1, \dots, m\}$.

Proof. Corresponding to the simple subdirect factors \mathfrak{S}_j $(j=1,\cdots,m)$ there exist reduced congruences (θ_j,φ_j) in \mathfrak{S} such that $\bigcap_{j=1}^{m} (\theta_j,\varphi_j) = (\varDelta_{\mathfrak{q}},\varDelta_{\mathfrak{A}})$ and $\mathfrak{S}_j \cong \mathfrak{S}/(\theta_j,\varphi_j)$. Since \mathfrak{S}_j are simple, then (θ_j,φ_j) are maximal reduced congruences. Choose a minimal subfamily of $\{\mathfrak{S}_j | j=1,\cdots,m\}$ such that its corresponding congruences satisfy

$$\mathop{\cap}\limits_{i=1}^r \left({ heta _i , \varphi _i }
ight) {=} \left({oldsymbol \varDelta _{ \mathcal{G} } , \, \mathcal{\Delta} _{ \mathcal{A} } }
ight)$$
 .

Then, for each $k=2, \dots, m$ note that we have

$$\bigcap_{i=1}^{k-1} (\theta_{j_i}, \varphi_{j_i}) \vee (\theta_{j_k}, \varphi_{j_k}) \geq (\theta_{j_k}, \varphi_{j_k}).$$

Thus, either

$$\bigcap_{i=1}^{k-1} (\theta_{j_i}, \varphi_{j_i}) \vee (\theta_{j_k}, \varphi_{j_k}) = (\theta_{j_k}, \varphi_{j_k})$$

No. 10]

or

$$\bigcap_{i=1}^{k-1} (\theta_{j_i}, \varphi_{j_i}) \vee (\theta_{j_k}, \varphi_{j_k}) = (G \times G, A \times A).$$

In the first case, then

$$\bigcap_{i=1}^{k-1} (\theta_{j_i}, \varphi_{j_i}) \leq (\theta_{j_k}, \varphi_{j_k})$$

EV,
$$\sum_{k=1}^{k-1} (\theta_{j_k}, \varphi_{j_k}) = (\theta_{j_k}, \varphi_{j_k})$$

and hence by maximalit

 $\bigcap_{i=1}^{} (\theta_{j_i}, \varphi_{j_i}) = (\theta_{j_k}, \varphi_{j_k})$ contrary to the minimality of the set $\{(\theta_{j_i}, \varphi_{j_i}) | i = 1, \dots, r\}$. Whence

contrary to the minimality of the set $\{(\theta_{j_i}, \varphi_{j_i}) | i = 1, \dots, r\}$. Whence the second condition prevails and the result follows.

Theorem 10. If the lattice of congruences of a genalgebra \mathfrak{S} is distributive and \mathfrak{S} is isomorphic to a subdirect product of the genalgebras $\{\mathfrak{S}_j | j=1, \dots, m\}$ under (f, g), then for each homomorphism (h, k) of \mathfrak{S} the genalgebra $(h, k)(\mathfrak{S}) = \langle h(G), O_1, \dots, O_n, k(A) \rangle$ is also isomorphic to a subdirect product of homomorphic images of the genalgebras \mathfrak{S}_j $(j=1, \dots, m)$.

Proof. By hypothesis and Theorem 1, there exists congruences (θ_j, φ_j) such that

$$\bigcap_{j=1}^{m} (\theta_j, \varphi_j) = (\varDelta_G, \varDelta_A)$$

and

$$\mathfrak{S}_j \cong \mathfrak{S}/(\theta_j, \varphi_j).$$

Let $\mathfrak{S}/(\theta,\varphi)$ be any quotient genalgebra of \mathfrak{S} and hence any homomorphic image $(h, k)(\mathfrak{S}) = \mathfrak{S}/(\theta, \varphi)$ of \mathfrak{S} . By Theorem 3, $\mathfrak{S}/(\theta, \varphi)$ is isomorphic to a subdirect product of irreducible genalgebras. Let the corresponding reduced congruences of this decomposition be given by $(\tilde{\zeta}_{\mu}, \tilde{\eta}_{\mu})\mu \in M$). From subdirect irreducibility, we have each of the congruences (completely) meet-irreducible. Also, each of the congruences $(\tilde{\zeta}_{\mu}, \tilde{\eta}_{\mu})$ corresponds to a reduced congruence $(\zeta_{\mu}, \eta_{\mu})$ of \mathfrak{S} . Considering an arbitrary $\mu \in M$, we have $(\zeta_{\mu}, \eta_{\mu}) = (\zeta_{\mu}, \eta_{\mu}) \vee \bigcap_{j=1}^{m} (\theta_{j}, \varphi_{j}) =$ $\bigcap_{j=1}^{m} [(\zeta_{\mu}, \eta_{\mu}) \vee (\theta_{j}, \varphi_{j})]$. By meet-irreduciblity, then

$$(\zeta_{\mu},\eta_{\mu}){=}(\zeta_{\mu},\eta_{\mu}){ee}(heta_{j_{\mu}},arphi_{j_{\mu}})$$

or

 $(\zeta_{\mu},\eta_{\mu}){\geq}(heta_{j_{\mu}},arphi_{j_{\mu}}) \qquad ext{for some } j_{\mu}{=}1,\,\cdots,\,m\;.$

Let then

$$(\psi_{j_{\mu}}, \omega_{j_{\mu}}) = \bigcap_{(\zeta_{\mu}, \eta_{\mu}) \geq (\theta_{j_{\mu}}, \varphi_{j_{\mu}})} (\zeta_{\mu}, \eta_{\mu}).$$

If $\Omega = \{(\psi_{j_{\mu}}, \omega_{j_{\mu}}) \mid \mu \in M\}$, then
$$\bigcap_{\theta \in \mathcal{Q}} \widetilde{\Theta} = (\mathcal{A}_{\mathcal{A}/\theta}, \mathcal{A}_{\mathcal{A}/\varphi}).$$

Thus $\mathfrak{S}/(\theta, \Psi)$ is isomorphic to a subdirect product of the genalgebras $\{(\mathfrak{S}/(\theta, \varphi))/\widetilde{\Theta} \mid \theta \in \Omega\}$ or $\{\mathfrak{S}/\theta \mid \theta \in \Omega\}$, and hence of

F. M. SIOSON

 $\{(\mathfrak{S}/\theta_{j_{\mu}},\varphi_{j_{\mu}}))/(\tilde{\psi}_{j_{\mu}},\tilde{\omega}_{j_{\mu}}) \mid \mu \in M\}$ which are homomorphic images of $\mathfrak{S}_{j}(j=1,\cdots,m)$. Q.E.D.

References

- [1] Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Phil. Soc., **31**, 433-454 (1935).
- [2] Foster, A. L., and A. F. Pixley: Semi-categorical algebras. II. Mathematische Zeitschrift, 85, 169-184 (1964).
- [3] Grätzer, G.: A representation theorem for multialgebras. Archiv der Mathematik, 13, 452-456 (1962).
- [4] Pickett, H. E.: Subdirect representation of relational systems. Fundamenta Mathematicae, 56, 221-240 (1964).
- [5] Sioson, F. M.: On generalized algebras. Notices of Amer. Math. Soc., 12, 98 (1965).
- [6] Tarski, A.: Some notions on the borderline of algebra and metamathematics. Proceedings of the International Congress of Mathematicians 1950, Providence, 705-720 (1952).