203. Decompositions of Generalized Algebras. I

By F. M. Sioson
Department of Mathematics, University of Florida (Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)

In an unpublished paper [5],*) the author proposed an organic unification and generalization of the theories of G. Birkhoff's universal algebras [1], A. Tarski's relational systems [6], and G. Grätzer's multialgebras [3] (further, [2], [4]). Even under this very general setting, one is able to recapture the homomorphism theorems, the isomorphism theorems, and theSchreier-Jordan-Hölder theorems of algebra.

The unification was achieved by defining a generalized algebra (or simply a genalgebra) as a system $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$ consisting of a pair of sets G and A and a family (which may be finite or infinite) of (finitary or infinitary) functions

$$
o_{i}: G^{m_{i}} \rightarrow A
$$

($i=1, \cdots, n$) called operations. Thus, we have universal algebras when $A=G$; relational systems when $A=\{T, F\}$; multialgebras when $A=2^{\theta}$; and related universal algebras when $A=G \cup\{T, F\}$. The n-tuple (m_{1}, \cdots, m_{n}) is called the type of the genalgebra. If $K \subseteq G$ and $C \subseteq A$ such that for each $i=1, \cdots, n$ and all elements x_{1}, x_{2}, \cdots, $x_{m_{i}} \in K$ we also have $o_{i}\left(x_{1}, x_{2}, \cdots, x_{m_{i}}\right) \in C$, then $\mathcal{K}=\left\langle K, o_{1}, \cdots, o_{n}, C\right\rangle$ is said to be a sub-genalgebra of \mathfrak{S}. When C moreover is minimal, that is, when

$$
C=\bigcup_{i=1}^{n} o_{i}(K, K, \cdots, K),
$$

\mathcal{K} is said to be a reduced genalgebra.
Given any other genalgebra $\mathcal{H}=\left\langle H, o_{1}^{\prime}, \cdots, o_{n}^{\prime}, B\right\rangle$ of the same type as $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$, a homomorphism from \mathfrak{S} to \mathscr{H} is a pair (h, k) of functions $h: G \rightarrow H$ and $k: A \rightarrow B$ such that for all $i=1, \cdots, n$, the following holds

$$
k\left(o_{i}\left(x_{1}, x_{2}, \cdots, x_{m_{i}}\right)\right)=o_{i}^{\prime}\left(h\left(x_{1}\right), h\left(x_{2}\right), \cdots, h\left(x_{m_{i}}\right)\right)
$$

for all $x_{1}, x_{2}, \cdots, x_{m_{i}} \in G$. When both h and k are onto and one-to-one functions, then (h, k) is called an isomorphism. A congruence in the genalgebra \mathfrak{S} is a pair (θ, φ) of equivalence relations θ on G and φ on A such that for each $i=1, \cdots, n$, if $\left(x_{j}, y_{j}\right) \in \theta$ for $j=1,2, \cdots$, m_{i}, then also $\left(o_{i}\left(x_{1}, x_{2}, \cdots, x_{m_{i}}\right), o_{i}\left(y_{1}, y_{2}, \cdots, y_{m_{i}}\right)\right) \in \varphi$. It should be noted that if (h, k) is a homomorphism of \mathfrak{S} into \mathscr{H}, then (θ, φ) with $\theta=h h^{-1}$ and $\varphi=k k^{-1}$ is a congruence on \subseteq (called the kernel of the homomorphism (h, k)). A congruence (θ, φ) on \mathfrak{S} defines a new

[^0]genalgebra $\subseteq /(\theta, \varphi)=\left\langle G / \theta, \widetilde{o}_{1}, \cdots, \widetilde{o}_{n}, A / \varphi\right\rangle$ (called the quotient genalgebra of \subseteq © modulo (θ, φ)) where
$$
o_{i}\left(x_{1} / \theta, \cdots, x_{m_{i}} / \theta\right)=o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right) / \varphi .
$$

Here x_{i} / θ and $o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right) / \varphi$ stands for the θ-equivalence class and φ-equivalence class containing x_{i} and $o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)$ respectively.

In the present communication, we shall consider direct and subdirect products and extend various theorems in algebras to genalgebras. Given a family $\left\{\mathscr{S}_{\lambda} \mid \lambda \in \Lambda\right\}$ of genalgebras of the same type, where

$$
\mathfrak{S}_{\lambda}=\left\langle G_{\lambda}, o_{1}^{\lambda}, \cdots, o_{n}^{\lambda}, A_{\lambda}\right\rangle
$$

the cartesian products $\prod_{\lambda \in A} G_{\lambda}$ and $\prod_{\lambda \in \Lambda} A_{\lambda}$ constitute a genalgebra

$$
\prod_{\lambda \in A} \mathbb{S}_{\lambda}^{\lambda \in \Lambda}=\left\langle\prod_{\lambda \in \Lambda} G_{\lambda}, O_{1}, \cdots, O_{n}, \prod_{\lambda \in \Lambda} A_{\lambda}\right\rangle
$$

called the direct product of the genalgebras \mathfrak{S}_{λ}, where for α_{1}, \cdots, $\alpha_{m_{i}} \in \prod_{\lambda \in \Lambda} G_{\lambda}$ the function $O_{i}\left(\alpha_{1}, \cdots, \alpha_{m_{i}}\right)$ in $\prod_{\lambda \in \Lambda} A_{\lambda}$ is defined as follow:

$$
O_{i}\left(\alpha_{1}, \cdots, \alpha_{m_{i}}\right)(\lambda)=o_{i}^{\lambda}\left(\alpha_{1}(\lambda), \cdots, \alpha_{m_{i}}(\lambda)\right)
$$

for all $\lambda \in \Lambda$ and $i=1, \cdots, n$. A sub-genalgebra $\mathcal{K}=\left\langle K, O_{1}, \cdots, O_{n}, C\right\rangle$ of the direct product $\prod_{\lambda \in A} \mathfrak{S}_{\lambda}$ is said to be a subdirect product of the genalgebras \mathfrak{S}_{λ} iff each of the (projection) homomorphisms $\left(p_{\lambda}, q_{\lambda}\right)$ with $p_{\lambda}(\alpha)=\alpha(\lambda)$ and $q_{\lambda}(\beta)=\beta(\lambda)$ maps \mathcal{K} onto \mathfrak{S}_{λ}, that is to say, $p_{\lambda}(K)=G_{\lambda}$ and $q_{\lambda}(C)=A_{\lambda}$.

Let us call a congruence (θ, φ) of \mathfrak{S} reduced if φ is the smallest equivalence relation on A such that (θ, φ) is a congruence of \mathbb{S}. Observe that if $\left(\theta, \varphi_{0}\right)$ is any congruence of $\subseteq \subseteq$ and φ_{λ} is any equivalence relation on A containing φ_{0}, then $\left(\theta, \varphi_{\lambda}\right)$ is also a congruence of \mathcal{S}. Thus, if $\left\{\varphi_{\lambda} \mid \lambda \in \Lambda\right\}$ is the collection of all equivalence relations on A such that $\left(\theta, \varphi_{\lambda}\right)$ is a congruence of \mathscr{S}, then (θ, φ), where $\varphi=$ $\bigcap_{\lambda \in 1} \varphi_{\lambda}$, is a reduced congruence of \mathfrak{S} (called the reduction of $\left(\theta, \varphi_{0}\right)$). In many discussions of genalgebras, it is sufficient to talk only of reduced congruences.

The following results in [5] will be needed in the sequel:
Theorem A. The collection $\mathcal{L}(\mathscr{S})$ of all congruences in a genalgebra $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$ forms a complete, compactly generated sublattice of the direct product $\mathcal{L}(G) \times \mathcal{L}(A)$ of the lattice $\mathcal{L}(G)$ of all equivalence relations on G and the lattice $\mathcal{L}(A)$ of all equivalence relations on A.

Theorem B. If (h, k) is a homomorphism of $\mathfrak{S}=\left\langle G, o_{1}, \cdots\right.$, $\left.o_{n}, A\right\rangle$ into $\mathscr{A}=\left\langle H, o_{1}^{\prime}, \cdots, o_{n}^{\prime}, B\right\rangle$, then $\mathfrak{S} /\left(h h^{-1}, k k^{-1}\right)$ is isomorphic to the subgenalgebra $(h, k)(\mathbb{S})=\left\langle h(G), o_{1}, \cdots, o_{n}^{\prime}, k(B)\right\rangle$ of \mathcal{H}. Conversely, for any congruence (θ, φ) of \subseteq the function pair (p, q) defined by $p(x)=x / \theta$ and $q(y)=y / \varphi$ is a homomorphism of \mathfrak{S} onto S/($\theta, \varphi)$.

Theorem C. For each congruence (θ, φ) of a genalgebra \mathfrak{S}, there is an isomorphism f between the lattice $\mathcal{L}(\mathscr{S} /(\theta, \varphi))$ of all congruences of $\mathfrak{S} /(\theta, \varphi)$ and the lattice $\mathcal{L}(\subseteq(\theta, \varphi))$ of all congruences (ζ, η) of \subseteq containing (θ, φ). Moreover, if $f(\zeta, \eta)=(\rho, \sigma)$, then

$$
\mathfrak{S} /(\zeta, \eta) \cong(\subseteq /(\theta, \varphi)) /(\rho, \sigma)
$$

The above function f is, in fact, defined by

$$
\begin{aligned}
& (x, y) \in \zeta \text { if and only if }(x / \theta, y / \theta) \in \rho \\
& (z, u) \in \eta \text { if and only if }(z / \varphi, u / \varphi) \in \sigma .
\end{aligned}
$$

Thus, (ρ, σ) is reduced if and only if (ζ, η) is reduced.
We now state our first result:
Theorem 1. A necessary and sufficient condition for a genalgebra $\mathfrak{S}=\left\langle G, o_{1}, \cdots, o_{n}, A\right\rangle$ to be isomorphic with a subdirect product of the genalgebras $\mathfrak{S}_{\lambda}=\left\langle G_{\lambda}, o_{1}^{\lambda}, \cdots, o_{n}^{\lambda}, A_{\lambda}\right\rangle$ is that there exists for each $\lambda \in \Lambda$ a homomorphism $\left(h_{\lambda}, k_{\lambda}\right)$ of \mathfrak{S} onto \mathfrak{S}_{λ} whose kernels $\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(h_{\lambda} h_{\lambda}^{-1}, k_{\lambda} k_{\lambda}^{-1}\right)$ satisfy the condition

$$
\bigcap_{\lambda \in A}\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(\Delta_{d}, \Delta_{A}\right),
$$

where $\Delta_{G}\left(\Delta_{A}\right)$ denotes the equality relation on $G(A)$.
Proof. Suppose \mathfrak{S} is isomorphic under (f, g) onto the subdirect product $\mathcal{K}=\left\langle K, \dot{O}_{1}, \cdots, O_{n}, C\right\rangle$ of the genalgebras \mathfrak{S}_{λ}. Let $\left(p_{\lambda}, q_{\lambda}\right)$ be the projection homomorphisms of \mathcal{K} onto $\mathfrak{S}_{\lambda}(\lambda \in \Lambda)$. $\operatorname{Set}\left(h_{\lambda}, k_{\lambda}\right)=$ ($p_{\lambda} f, q_{\lambda} g$). Then for each $i=1, \cdots, n$ and all $x_{1}, \cdots, x_{m_{i}} \in G$, we have

$$
\begin{aligned}
k_{\lambda}\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)\right) & =q_{\lambda} g\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)\right)=q_{\lambda} O_{i}\left(f\left(x_{1}\right), \cdots, f\left(x_{m_{i}}\right)\right) \\
& =o_{i}^{\lambda}\left(p_{\lambda} f\left(x_{1}\right), \cdots, p_{\lambda} f\left(x_{m_{i}}\right)\right)=o_{i}^{\lambda}\left(h_{\lambda}\left(x_{1}\right), \cdots, h_{\lambda}\left(x_{m_{i}}\right)\right) .
\end{aligned}
$$

Thus, $\left(h_{\lambda}, k_{\lambda}\right)$ is a homomorphism, and clearly $h_{\lambda}(G)=G_{\lambda}$ and $k_{\lambda}(A)=$ A_{λ}. It remains to show the second condition. Assume that $(x, y) \in$ $\bigcap_{\lambda \in A} \theta_{\lambda}$ so that $(x, y) \in \theta_{\lambda}$ for all $\lambda \in \Lambda$. Since $\theta_{\lambda}=h_{\lambda} h_{\lambda}^{-1}=\left(p_{\lambda} f\right)\left(p_{\lambda} f\right)^{-1}$, then $p_{\lambda}(f(x))=p_{\lambda}(f(y))$ for all $\lambda \in \Lambda$. Hence $f(x)=f(y)$. But f is one-to-one; therefore, $x=y$ or $(x, y) \in \Delta_{G}$. A similar result may be derived for Δ_{A}. The second given condition thus follows.

Conversely, suppose the above two conditions hold. For each $x \in G$ and $y \in A$, let $\chi \in \prod_{\lambda \in A} G_{\lambda}$ and $\psi \in \prod_{\lambda \in A} A_{\lambda}$ such that $\chi(\lambda)=h_{\lambda}(x)$ and $\psi(\lambda)=k_{\lambda}(y)$ for all $\lambda \in \Lambda$. Set $K=\{\chi \mid x \in G\}$ and $C=\{\psi \mid y \in A\}$. For each $i=1,2, \cdots, n$ and $\chi_{1}, \cdots, \chi_{m_{i}} \in K$ observe that

$$
\begin{aligned}
O_{i}\left(\chi_{1}, \cdots, \chi_{m_{i}}\right)(\lambda) & =o_{i}^{\lambda}\left(\chi_{1}(\lambda), \cdots, \chi_{m_{i}}(\lambda)\right)=o_{i}^{\lambda}\left(h_{\lambda}\left(x_{1}\right), \cdots, h_{\lambda}\left(x_{m_{i}}\right)\right) \\
& =k_{\lambda}\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)\right) \in C .
\end{aligned}
$$

Hence $\mathcal{K}=\left\langle K, O_{1}, \cdots, O_{n}, C\right\rangle$ is a subgenalgebra of the product $\prod_{\lambda \in \Lambda} \mathscr{S}_{\lambda}$.
Define $(f, g): \mathbb{S} \rightarrow \mathcal{K}$ such that $f(x)=\chi$ and $g(y)=\psi . \quad$ Let

$$
g\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)\right)=\omega
$$

for $i=1, \cdots, n$ and $x_{1}, \cdots, x_{m_{i}} \in G$. Then

$$
\begin{aligned}
\omega(\lambda) & =k_{\lambda}\left(o_{i}\left(x_{1}, \cdots, x_{m_{i}}\right)\right)=o_{i}^{\lambda}\left(h_{\lambda}\left(x_{1}\right), \cdots, h_{\lambda}\left(x_{m_{i}}\right)\right) \\
& =o_{i}^{\lambda}\left(\chi_{1}(\lambda), \cdots, \chi_{m_{i}}(\lambda)\right)=O_{i}\left(\chi_{1}, \cdots, \chi_{m_{i}}\right)(\lambda)
\end{aligned}
$$

for all $\lambda \in \Lambda$ and therefore $O_{i}\left(\chi_{1}, \cdots, \chi_{m_{i}}\right)=\omega$. Hence

$$
g\left(o_{i}\left(X_{1}, \cdots, x_{m_{i}}\right)\right)=\omega=O_{i}\left(\chi_{1}, \cdots, \chi_{m_{i}}\right)=O_{i}\left(f\left(x_{1}\right), \cdots, f\left(x_{m_{i}}\right)\right) .
$$

This shows that (f, g) is a homomorphism. If $f\left(x_{1}\right)=f\left(x_{2}\right)$ so that $\chi_{1}(\lambda)=\chi_{2}(\lambda)$ for all $\lambda \in \Lambda$, then $h_{\lambda}\left(x_{1}\right)=h_{\lambda}\left(x_{2}\right)$ for all $\lambda \in \Lambda$. This means that $\left(x_{1}, x_{2}\right) \in \theta_{\lambda}$ for all $\lambda \in \Lambda$ and therefore by hypothesis $x_{1}=x_{2}$. The same proof applies to the function g. Thus, both f and g are one-to-one and therefore (f, g) is an isomorphism. Inasmuch as $h_{\lambda}(G)=G_{\lambda}$ and $k_{\lambda}(A)=A_{\lambda}$ for each $\lambda \in \Lambda$, then $p_{\lambda}(K)=h_{\lambda} f^{-1}(K)=h_{\lambda}(G)=G_{\lambda}$ and $q_{\lambda}(C)=k_{\lambda} g^{-1}(C)=k_{\lambda}(A)=A_{\lambda}$. This completes the proof of the theorem.

Corollary 2. There is a one-to-one correspondence between the subdirect product representations of a genalgebra \mathfrak{S} and the collection of all sets of congruences $\left\{\left(\theta_{\lambda}, \varphi_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ of \subseteq such that

$$
\bigcap_{\lambda \in \Lambda}\left(\theta_{\lambda}, \varphi_{\lambda}\right)=\left(\Delta_{G}, \Delta_{A}\right) .
$$

A genalgebra is said to be directly (subdirectly) reducible iff it is isomorphic to a direct (subdirect) product of at least two genalgebras such that of the associated projection homomorphisms are isomorphisms (and hence with non-trivial projection kernels). Otherwise, it is directly (subdirectly) irreducible.

Examples. Consider the genalgebra $\mathfrak{S}=\langle G, o, A\rangle=\langle\{0,1\}, o,\{a, b\}\rangle$ such that $o(x, y)=a$ for all $x, y \in G$. Then note that $\mathfrak{S} \cong \subseteq\left(/ G \times G, \Delta_{4}\right) \times$ S/ $\left(\Lambda_{G}, A \times A\right)$ under the function pair defined by

$$
\begin{aligned}
& f(0)=(\{0,1\},\{0\}) \\
& f(1)=(\{0,1\},\{1\})
\end{aligned} \quad \text { and } \quad \begin{aligned}
& g(a)=(\{a\},\{a, b\}) \\
& g(b)=(\{b\},\{a, b\}) .
\end{aligned}
$$

Note also that \mathfrak{S} is isomorphic to the subdirect product

$$
\langle\{(\{0\},\{0,1\}),(\{1\},\{0,1\})\}, O,\{(\{a\},\{a\}),(\{b\},\{b\})\}\rangle
$$

of $\mathbb{S} /\left(\Delta_{G}, \Delta_{A}\right)$ and $\mathfrak{S} /\left(G \times G, \Delta_{A}\right)$ under the function pair (f, g) such that

$$
\begin{aligned}
& f(0)=(\{0\},\{0,1\}) \\
& f(1)=(\{1\},\{0,1\})
\end{aligned} \quad \text { and } \quad \begin{aligned}
& g(a)=(\{a\},\{a\}) \\
& g(b)=(\{b\},\{b\}) .
\end{aligned}
$$

On the other hand, observe that the reduced genalgebra $\mathbb{S}^{\prime}=\langle\{0,1\}$, $o,\{a\}\rangle$ is both subdirectly and directly irreducible.

[^0]: *) For the references, see the list at the end of the following article.

