203. Decompositions of Generalized Algebras. I

By F. M. SIOSON

Department of Mathematics, University of Florida (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

In an unpublished paper [5],^{*)} the author proposed an organic unification and generalization of the theories of G. Birkhoff's universal algebras [1], A. Tarski's relational systems [6], and G. Grätzer's multialgebras [3] (further, [2], [4]). Even under this very general setting, one is able to recapture the homomorphism theorems, the isomorphism theorems, and the Schreier-Jordan-Hölder theorems of algebra.

The unification was achieved by defining a generalized algebra (or simply a genalgebra) as a system $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ consisting of a pair of sets G and A and a family (which may be finite or infinite) of (finitary or infinitary) functions

$o_i: G^{m_i} \to A$

 $(i=1, \dots, n)$ called operations. Thus, we have universal algebras when A=G; relational systems when $A=\{T, F\}$; multialgebras when $A=2^{\sigma}$; and related universal algebras when $A=G\cup\{T, F\}$. The *n*-tuple (m_1, \dots, m_n) is called the *type* of the genalgebra. If $K\subseteq G$ and $C\subseteq A$ such that for each $i=1, \dots, n$ and all elements $x_1, x_2, \dots, x_{m_i} \in K$ we also have $o_i(x_1, x_2, \dots, x_{m_i}) \in C$, then $\mathcal{K}=\langle K, o_1, \dots, o_n, C \rangle$ is said to be a *sub-genalgebra* of \mathfrak{S} . When C moreover is minimal, that is, when

$$C = \bigcup_{i=1}^{n} o_i(K, K, \cdots, K),$$

 \mathcal{K} is said to be a reduced genalgebra.

Given any other genalgebra $\mathcal{H} = \langle H, o'_1, \dots, o'_n, B \rangle$ of the same type as $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$, a homomorphism from \mathfrak{S} to \mathcal{H} is a pair (h, k) of functions $h: G \to H$ and $k: A \to B$ such that for all $i=1, \dots, n$, the following holds

 $k(o_i(x_1, x_2, \dots, x_{m_i})) = o'_i(h(x_1), h(x_2), \dots, h(x_{m_i}))$

for all $x_1, x_2, \dots, x_{m_i} \in G$. When both h and k are onto and one-to-one functions, then (h, k) is called an *isomorphism*. A *congruence* in the genalgebra \mathfrak{S} is a pair (θ, φ) of equivalence relations θ on G and φ on A such that for each $i=1, \dots, n$, if $(x_j, y_j) \in \theta$ for $j=1, 2, \dots, m_i$, then also $(o_i(x_1, x_2, \dots, x_{m_i}), o_i(y_1, y_2, \dots, y_{m_i})) \in \varphi$. It should be noted that if (h, k) is a homomorphism of \mathfrak{S} into \mathcal{H} , then (θ, φ) with $\theta = hh^{-1}$ and $\varphi = kk^{-1}$ is a congruence (θ, φ) on \mathfrak{S} defines a new

^{*)} For the references, see the list at the end of the following article.

genalgebra $\mathfrak{S}/(\theta, \varphi) = \langle G/\theta, \tilde{o}_1, \dots, \tilde{o}_n, A/\varphi \rangle$ (called the quotient genalgebra of \mathfrak{S} modulo (θ, φ)) where

$$o_i(x_{\scriptscriptstyle 1}\!/ heta,\,\cdots,\,x_{\scriptscriptstyle m_i}\!/ heta)=o_i(x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle m_i})\!/arphi$$
 .

Here x_i/θ and $o_i(x_1, \dots, x_{m_i})/\varphi$ stands for the θ -equivalence class and φ -equivalence class containing x_i and $o_i(x_1, \dots, x_{m_i})$ respectively.

In the present communication, we shall consider direct and subdirect products and extend various theorems in algebras to genalgebras. Given a family $\{\mathfrak{S}_{\lambda} \mid \lambda \in \Lambda\}$ of genalgebras of the same type, where

$$\mathfrak{S}_{\lambda} = \langle G_{\lambda}, o_{1}^{\lambda}, \cdots, o_{n}^{\lambda}, A_{\lambda} \rangle,$$

the cartesian products $\prod_{\lambda \in G} G_{\lambda}$ and $\prod_{\lambda \in G} A_{\lambda}$ constitute a genalgebra

$$\prod_{\lambda \in A} \mathfrak{S}_{\lambda} = \langle \prod_{\lambda \in A} G_{\lambda}, O_{1}, \cdots, O_{n}, \prod_{\lambda \in A} A_{\lambda} \rangle$$

called the *direct product* of the genalgebras \mathfrak{S}_{λ} , where for $\alpha_1, \dots, \alpha_{m_i} \in \prod_{\lambda \in A} G_{\lambda}$ the function $O_i(\alpha_1, \dots, \alpha_{m_i})$ in $\prod_{\lambda \in A} A_{\lambda}$ is defined as follow: $O_i(\alpha_1, \dots, \alpha_{m_i})(\lambda) = o_i^{\lambda}(\alpha_1(\lambda), \dots, \alpha_{m_i}(\lambda))$

for all $\lambda \in \Lambda$ and $i=1, \dots, n$. A sub-genalgebra $\mathcal{K} = \langle K, O_1, \dots, O_n, C \rangle$ of the direct product $\prod_{\lambda \in \Lambda} \mathfrak{S}_{\lambda}$ is said to be a subdirect product of the genalgebras \mathfrak{S}_{λ} iff each of the (projection) homomorphisms $(p_{\lambda}, q_{\lambda})$ with $p_{\lambda}(\alpha) = \alpha(\lambda)$ and $q_{\lambda}(\beta) = \beta(\lambda)$ maps \mathcal{K} onto \mathfrak{S}_{λ} , that is to say, $p_{\lambda}(K) = G_{\lambda}$ and $q_{\lambda}(C) = A_{\lambda}$.

Let us call a congruence (θ, φ) of \mathfrak{S} reduced if φ is the smallest equivalence relation on A such that (θ, φ) is a congruence of \mathfrak{S} . Observe that if (θ, φ_0) is any congruence of \mathfrak{S} and φ_{λ} is any equivalence relation on A containing φ_0 , then $(\theta, \varphi_{\lambda})$ is also a congruence of \mathfrak{S} . Thus, if $\{\varphi_{\lambda} \mid \lambda \in A\}$ is the collection of all equivalence relations on A such that $(\theta, \varphi_{\lambda})$ is a congruence of \mathfrak{S} , then (θ, φ) , where $\varphi = \bigcap_{\lambda \in A} \varphi_{\lambda}$, is a reduced congruence of \mathfrak{S} (called the *reduction* of (θ, φ_0)). In many discussions of genalgebras, it is sufficient to talk only of reduced congruences.

The following results in [5] will be needed in the sequel:

Theorem A. The collection $\mathcal{L}(\mathfrak{S})$ of all congruences in a genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ forms a complete, compactly generated sublattice of the direct product $\mathcal{L}(G) \times \mathcal{L}(A)$ of the lattice $\mathcal{L}(G)$ of all equivalence relations on G and the lattice $\mathcal{L}(A)$ of all equivalence relations on A.

Theorem B. If (h, k) is a homomorphism of $\mathfrak{S} = \langle G, o_1, \cdots, o_n, A \rangle$ into $\mathcal{H} = \langle H, o'_1, \cdots, o'_n, B \rangle$, then $\mathfrak{S}/(hh^{-1}, kk^{-1})$ is isomorphic to the subgenalgebra $(h, k)(\mathfrak{S}) = \langle h(G), o_1, \cdots, o'_n, k(B) \rangle$ of \mathcal{H} . Conversely, for any congruence (θ, φ) of \mathfrak{S} the function pair (p, q) defined by $p(x) = x/\theta$ and $q(y) = y/\varphi$ is a homomorphism of \mathfrak{S} onto $\mathfrak{S}/(\theta, \varphi)$.

No. 10]

Theorem C. For each congruence (θ, φ) of a genalgebra \mathfrak{S} , there is an isomorphism f between the lattice $\mathcal{L}(\mathfrak{S}/(\theta, \varphi))$ of all congruences of $\mathfrak{S}/(\theta, \varphi)$ and the lattice $\mathcal{L}(\mathfrak{S}(\theta, \varphi))$ of all congruences (ζ, η) of \mathfrak{S} containing (θ, φ) . Moreover, if $f(\zeta, \eta) = (\rho, \sigma)$, then

 $\mathfrak{S}/(\zeta,\eta)\cong(\mathfrak{S}/(heta,arphi))/(
ho,\sigma).$

The above function f is, in fact, defined by

 $(x, y) \in \zeta$ if and only if $(x/\theta, y/\theta) \in \rho$,

 $(z, u) \in \eta$ if and only if $(z/\varphi, u/\varphi) \in \sigma$.

Thus, (ρ, σ) is reduced if and only if (ζ, η) is reduced.

We now state our first result:

Theorem 1. A necessary and sufficient condition for a genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ to be isomorphic with a subdirect product of the genalgebras $\mathfrak{S}_{\lambda} = \langle G_{\lambda}, o_{1}^{\lambda}, \dots, o_{n}^{\lambda}, A_{\lambda} \rangle$ is that there exists for each $\lambda \in \Lambda$ a homomorphism $(h_{\lambda}, k_{\lambda})$ of \mathfrak{S} onto \mathfrak{S}_{λ} whose kernels $(\theta_{\lambda}, \varphi_{\lambda}) = (h_{\lambda}h_{\lambda}^{-1}, k_{\lambda}k_{\lambda}^{-1})$ satisfy the condition

$$\bigcap_{\lambda \in A} (\theta_{\lambda}, \varphi_{\lambda}) = (\varDelta_{G}, \varDelta_{A}),$$

where $\Delta_{G}(\Delta_{A})$ denotes the equality relation on G(A).

Proof. Suppose \mathfrak{S} is isomorphic under (f, g) onto the subdirect product $\mathcal{K} = \langle K, O_1, \dots, O_n, C \rangle$ of the genalgebras \mathfrak{S}_{λ} . Let $(p_{\lambda}, q_{\lambda})$ be the projection homomorphisms of \mathcal{K} onto $\mathfrak{S}_{\lambda}(\lambda \in \Lambda)$. Set $(h_{\lambda}, k_{\lambda}) =$ $(p_{\lambda}f, q_{\lambda}g)$. Then for each $i = 1, \dots, n$ and all $x_1, \dots, x_{m_i} \in G$, we have

$$k_{\lambda}(o_i(x_1, \cdots, x_{m_i})) = q_{\lambda}g(o_i(x_1, \cdots, x_{m_i})) = q_{\lambda}O_i(f(x_1), \cdots, f(x_{m_i}))$$

= $o_i^{\lambda}(p_{\lambda}f(x_1), \cdots, p_{\lambda}f(x_{m_i})) = o_i^{\lambda}(h_{\lambda}(x_1), \cdots, h_{\lambda}(x_{m_i}))$

Thus, $(h_{\lambda}, k_{\lambda})$ is a homomorphism, and clearly $h_{\lambda}(G) = G_{\lambda}$ and $k_{\lambda}(A) = A_{\lambda}$. It remains to show the second condition. Assume that $(x, y) \in \bigcap_{\lambda \in A} \theta_{\lambda}$ so that $(x, y) \in \theta_{\lambda}$ for all $\lambda \in A$. Since $\theta_{\lambda} = h_{\lambda}h_{\lambda}^{-1} = (p_{\lambda}f)(p_{\lambda}f)^{-1}$, then $p_{\lambda}(f(x)) = p_{\lambda}(f(y))$ for all $\lambda \in A$. Hence f(x) = f(y). But f is one-to-one; therefore, x = y or $(x, y) \in \Delta_{d}$. A similar result may be derived for Δ_{4} . The second given condition thus follows.

Conversely, suppose the above two conditions hold. For each $x \in G$ and $y \in A$, let $\chi \in \prod_{\lambda \in A} G_{\lambda}$ and $\psi \in \prod_{\lambda \in A} A_{\lambda}$ such that $\chi(\lambda) = h_{\lambda}(x)$ and $\psi(\lambda) = k_{\lambda}(y)$ for all $\lambda \in A$. Set $K = \{\chi \mid x \in G\}$ and $C = \{\psi \mid y \in A\}$. For each $i = 1, 2, \dots, n$ and $\chi_{1}, \dots, \chi_{m_{i}} \in K$ observe that

$$O_i(\chi_1, \cdots, \chi_{m_i})(\lambda) = o_i^{\lambda}(\chi_1(\lambda), \cdots, \chi_{m_i}(\lambda)) = o_i^{\lambda}(h_{\lambda}(x_1), \cdots, h_{\lambda}(x_{m_i}))$$

= $k_{\lambda}(o_i(x_1, \cdots, x_{m_i})) \in C.$

Hence $\mathcal{K} = \langle K, O_1, \dots, O_n, C \rangle$ is a subgenalgebra of the product $\prod_{\lambda \in A} \mathfrak{S}_{\lambda}$. Define $(f, g): \mathfrak{S} \to \mathcal{K}$ such that $f(x) = \chi$ and $g(y) = \psi$. Let

$$g(o_i(x_1, \cdots, x_{m_i})) = \omega$$

for $i=1, \dots, n$ and $x_1, \dots, x_{m_i} \in G$. Then $\omega(\lambda) = k_{\lambda}(o_i(x_1, \dots, x_{m_i})) = o_i^{\lambda}(h_{\lambda}(x_1), \dots, h_{\lambda}(x_{m_i}))$ $= o_i^{\lambda}(\chi_1(\lambda), \dots, \chi_{m_i}(\lambda)) = O_i(\chi_1, \dots, \chi_{m_i})(\lambda)$ for all $\lambda \in \Lambda$ and therefore $O_i(\chi_1, \dots, \chi_{m_i}) = \omega$. Hence

 $g(o_i(X_1, \cdots, x_{m_i})) = \omega = O_i(\chi_1, \cdots, \chi_{m_i}) = O_i(f(x_1), \cdots, f(x_{m_i})).$

This shows that (f, g) is a homomorphism. If $f(x_1) = f(x_2)$ so that $\chi_1(\lambda) = \chi_2(\lambda)$ for all $\lambda \in \Lambda$, then $h_{\lambda}(x_1) = h_{\lambda}(x_2)$ for all $\lambda \in \Lambda$. This means that $(x_1, x_2) \in \theta_{\lambda}$ for all $\lambda \in \Lambda$ and therefore by hypothesis $x_1 = x_2$. The same proof applies to the function g. Thus, both f and g are one-to-one and therefore (f, g) is an isomorphism. Inasmuch as $h_{\lambda}(G) = G_{\lambda}$ and $k_{\lambda}(A) = A_{\lambda}$ for each $\lambda \in \Lambda$, then $p_{\lambda}(K) = h_{\lambda}f^{-1}(K) = h_{\lambda}(G) = G_{\lambda}$ and $q_{\lambda}(C) = k_{\lambda}g^{-1}(C) = k_{\lambda}(A) = A_{\lambda}$. This completes the proof of the theorem.

Corollary 2. There is a one-to-one correspondence between the subdirect product representations of a genalgebra \mathfrak{S} and the collection of all sets of congruences $\{(\theta_{\lambda}, \varphi_{\lambda}) \mid \lambda \in \Lambda\}$ of \mathfrak{S} such that $\bigcap_{\lambda \in \Lambda} (\theta_{\lambda}, \varphi_{\lambda}) = (\mathcal{A}_{g}, \mathcal{A}_{A}).$

A genalgebra is said to be *directly* (subdirectly) reducible iff it is isomorphic to a direct (subdirect) product of at least two genalgebras such that of the associated projection homomorphisms are isomorphisms (and hence with non-trivial projection kernels). Otherwise, it is *directly* (subdirectly) irreducible.

Examples. Consider the genalgebra $\mathfrak{S} = \langle G, o, A \rangle = \langle \{0, 1\}, o, \{a, b\} \rangle$ such that o(x, y) = a for all $x, y \in G$. Then note that $\mathfrak{S} \cong \mathfrak{S}/(G \times G, \mathcal{A}_A) \times \mathfrak{S}/(\mathcal{A}_{\mathfrak{G}}, A \times A)$ under the function pair defined by

$f(0) = (\{0, 1\}, \{0\})$	and	$g(a) = (\{a\}, \{a, b\})$
$f(1) \!=\! (\{0, 1\}, \{1\})$		$g(b) = (\{b\}, \{a, b\}).$

Note also that \mathfrak{S} is isomorphic to the subdirect product

 $\langle \{(\{0\}, \{0, 1\}), (\{1\}, \{0, 1\})\}, O, \{(\{a\}, \{a\}), (\{b\}, \{b\})\} \rangle$ of $\mathfrak{S}/(\mathcal{A}_{d}, \mathcal{A}_{d})$ and $\mathfrak{S}/(G \times G, \mathcal{A}_{d})$ under the function pair (f, g) such that

$f(0) = (\{0\}, \{0, 1\})$	and	$g(a) = (\{a\}, \{a\})$
$f(1) = (\{1\}, \{0, 1\})$		$g(b) = (\{b\}, \{b\}).$

On the other hand, observe that the reduced genalgebra $\mathfrak{S}' = \langle \{0, 1\}, o, \{a\} \rangle$ is both subdirectly and directly irreducible.