195. A Characterization of Boolean Algebra

By Kiyoshi ISÉKI

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

In my note [4], I gave an algebraic formulation of propositional calculi. Under the same idea, I shall give a characterization of Boolean algebra. The fundamental axioms are given by the algebraic formulation of E. Mendelson axioms [3].

Let $\langle X, 0, *, \sim \rangle$ be an algebra satisfying the axioms given below, where 0 is an element of a set X, and * is a binary operation and \sim is an unary operation. If $x * y = 0, x, y \in X$, we write $x \leq y$ and \leq introduce an order relation on X.

1 $x * y \leq x$,

$$2 \quad (x*z)*(y*z) \leq (x*y)*z,$$

3
$$x * (y * \sim x) \leq (\sim y) * (\sim x),$$

- 4 $0 \leqslant x$,
- 5 $x \leqslant y$ and $y \leqslant x$ imply x = y.

If we define $x \lor y = \sim (\sim y * x)$, $x \land y = y * (\sim x)$ and put $1 = \sim 0$, then we shall prove that the algebra $M = \langle X, 0, *, \sim \rangle$ is a Boolean algebra with 1 as the unit on the operations \lor, \land , and \sim . To prove it, we need some lemmas given in [4]. We do not give the proofs of these lemmas (see [4]).

- $(1) \quad 0 * x = 0.$
- $(2) \quad x * x = 0.$
- (3) $x \leqslant y$ and $y \leqslant z$ imply $x \leqslant z$.
- (4) $x * y \leq z$ implies $x * z \leq y$.
- (5) $x \leqslant y$ implies $z * y \leqslant z * x$ and $x * z \leqslant y * z$.
- $(6) \quad y * x = (y * x) * x.$

The relation of (4) is called the *commutative law*. Further we shall prove some propositions from the axioms and the propositions $(1)\sim(6)$ which are proved from the axioms 1 and 2.

(7) $x * (x * (\sim x)) = 0, x * (\sim x) = x.$

Let y=x in axiom 3, then by axiom 2, we have (7) and $x*(\sim x)=x$ by axiom 1.

 $(8) \quad x * (\sim y) \leq y * (\sim x).$

From axioms 1 and 3, we have

 $x * (y * (\sim x)) \leq (\sim y) * (\sim x) \leq \sim y,$

hence by (4), we have $x * (\sim y) \leq y * (\sim x)$.

(9) $x * (\sim y) = y * (\sim x)$.

This follows from (8) (see [4]), and consequently M is a BN-algebra. Hence we have $x \leq \sim (\sim x)$, and M is an NBN-algebra by

[Vol. 41,

theorem 4 in [4]. Hence for any $x, y \in X$, we have $(\sim x) * (\sim y) \le y * x$.

(10) $x*(\sim y) \leq y, x*y \leq \sim y.$

By (9) and axiom 1, we have $x*(\sim y)=y*(\sim x)\leqslant y$. Next, if we apply the commutative law, then we have $x*y\leqslant (\sim y)$.

(11) $z * y \leq z * (x * (\sim y)).$

The first inequality of (10) and (5) imply (11).

(12) $z*(\sim x) \leq z*(y*x)$.

This follows from $y * x \leq \sim x$ and (5).

As already noted, M is an NBN-algebra, so $(\sim x)*(\sim y) \leq y*x$ holds in M. Hence by (5), we have

 $(y * (x * (\sim y))) * (y * x) \leq (y * (x * (\sim y))) * ((\sim x) * (\sim y)).$

By axiom 3, the right side of inequality above is 0, hence we have $y*(x*(\sim y)) \leq y*x$.

Further, by the commutative law, we have

(13) $y*(y*x) \leq x*(\sim y)$.

Put $y = \sim x$ in (13), then we have $(\sim x) * ((\sim x) * x) \leq x * (\sim (\sim x)) = 0$ by $x \leq \sim (\sim x)$. Hence

(14) $(\sim x) * ((\sim x) * x) = 0.$

Let $z = \sim (\sim x)$, $x = \sim (\sim x)$, and y = x in (11), then by (14), we have (15) $\sim (\sim x) \leq x$.

On the other hand, $x \leq \sim (\sim x)$ holds in *M*, hence

(16) $\sim (\sim x) = x$.

In the BN-axiom (9) $x*(\sim y)=y*(\sim x)$, substitute $\sim x$ for x, then, by (16), we have $(\sim x)*(\sim y)=y*(\sim (\sim x))=y*x$. Therefore the B-axiom holds, and the NB-axiom also holds in M.

In (13), if we substitute x for y, and 0 for x, then we have $x*(x*0) \leq 0*(\sim x) = 0$. Hence $x \leq x*0$. Axiom 1 implies $x*0 \leq x$, therefore we have

(17) x * 0 = x.

We first verify some simple axioms of the Boolean algebra (for axioms, see [1] or [2]). Several axioms verified are superfluous.

(A) $\sim (\sim x) = x$

is proposition (16).

(B) $x \lor y = y \lor x$, $x \land y = y \land x$ are proved by $x \lor y = \sim (\sim y * x) = \sim (\sim x * y) = y \lor x$ and $x \land y = y * (\sim x) = x * (\sim y) = y \land x$.

(C) $x \land 0=0, x \lor 1=1$ follow from $x \land 0=0*(\sim x)=0$ and $x \lor 1=\sim(\sim 1*x)=\sim(0*x)=\sim 0=1$.

(D) $x \wedge 1=x$, $x \vee 0=x$ are proved from $x \wedge 1=1*(\sim x)=x*0=x$ and $x \vee 0=\sim(\sim 0*x)=\sim((\sim x)*0)=\sim(\sim x)=x$ by using (16) and (17).

894

No. 10]

(E) $x \land (\sim x) = 0$, $x \lor (\sim x) = 1$ follow from $x \land (\sim x) = \sim x * \sim x = 0$ and $x \lor (\sim x) = \sim (\sim (\sim x) * x) = \sim (x * x) = \sim 0 = 1$.

(F) $x \wedge x = x, x \vee x = x$

are proved by $x \wedge x = x * (\sim x) = x$, and $x \vee x = \sim (\sim x * x) = \sim (\sim x) = x$ by using (17).

(G) $\sim (x \land y) = \sim x \lor \sim y$, $\sim (x \lor y) = \sim x \land \sim y$ follow from $\sim (x \land y) = \sim (y \ast (\sim x)) = \sim (\sim (\sim x) \ast (\sim y)) = (\sim y) \lor (\sim x) =$ $(\sim x) \lor (\sim y)$, and $\sim (x \lor y) = \sim (\sim ((\sim y) \ast x)) = (\sim y) \ast x = (\sim y) \ast (\sim (\sim x)) =$ $(\sim x) \land (\sim y)$.

Next we shall prove $x \land (x \lor y) = x$, $x \lor (x \land y) = x$. We first prove (18) $x * (x * (\sim y * x)) = 0$, i.e. $x * (\sim y * x) = x$.

By (13) and the NB-formula, we have

 $x * (x * (\sim y * x)) \leq (\sim y * x) * (\sim x) = (\sim x * y) * (\sim x).$

By axiom 1 and (15), $(\sim x * y) * (\sim x) \leq (\sim x) * (\sim x) = 0$. Therefore we have the formula (18).

Consider $x \land (x \lor y)$, then by the definitions of \land, \lor , we have $x \land (x \lor y) = x \land (\sim (\sim y * x)) = \sim (\sim y * x) * (\sim x) = x * ((\sim y) * x) = x$ from (18). By the same technique, we have $x \lor (x \land y) = x \lor (y * (\sim x)) = \sim (\sim (y * (\sim x)) * x) = \sim (\sim x * (y * (\sim x))) = \sim (\sim x) = x$. Hence

(H) $x \wedge (x \vee y) = x, x \vee (x \wedge y) = x.$

Now we are a position to prove the associative law on \land, \lor , and distributive law. If we prove these properties, M is a Boolean algebra (see [2]). We shall consider the proof of

(1) $x \land (y \land z) = (x \land y) \land z, \ x \lor (y \lor z) = (x \lor y) \lor z.$ By the definitions of \land and \lor , we have $x \land (y \land z) = (y \land z) * (\sim x) = (z * (\sim y)) * (\sim x) = (y * (\sim z)) * (\sim x),$ $(x \land y) \land z = z * (\sim (x \land y)) = z * (\sim (y * (\sim x))) = (y * (\sim x)) * (\sim z)$

and

$$\begin{array}{l} x \lor (y \lor z) = x \lor (\sim (\sim z \ast y)) = \sim ((\sim z \ast y) \ast x) = \sim ((\sim y \ast z) \ast x), \\ (x \lor y) \lor z = (\sim (\sim y \ast z)) \land z = \sim (\sim z \ast (\sim (\sim y \ast x)))) = \sim ((\sim y \ast x) \ast z). \\ \text{To prove (I), it is sufficient to verify} \\ (19) \quad (x \ast y) \ast z = (x \ast z) \ast y. \end{array}$$

By axioms 2 and 1, we have

$$(x*y)*((x*z)*y) \leq (x*(x*z))*y \leq x*(x*z).$$

From (13) and axiom 1, we have

$$x * (x * z) \leqslant z * (\sim x) \leqslant z.$$

Hence $(x*y)*((x*z)*y) \leq z$. Applying the commutative law, we have $(x*y)*z \leq (x*z)*y$.

This implies the formula (19).

Therefore, we have that M is a lattice and $x \lor y, x \land y$ are supremum, infimum of x and y on the order \leq respectively.

K. Iséki

Next we shall prove the distributivity. A simple condition by P. Lorenzen that a lattice be distributive is that

(J) $x \wedge y \leq z, x \leq y \vee z$ imply $x \leq z$.

(For detail, see H. B. Curry [1], p. 137.) The first two conditions are respectively expressed by $y*(\sim x) \leq z, \sim z*y \leq \sim x$.

From $y*(\sim x) \leq z$, we have $x*(\sim y) \leq z$. Hence $x*z \leq \sim y$.

From $\sim z * y \leqslant \sim x$, we have $\sim z * \sim x \leqslant y$. This shows $x * z \leqslant y$. Since *M* is a *B*-algebra, by axiom 3, we have

$$x * (x * (\sim y)) \leq x * y.$$

If we substitute x * z for x, then

$$(x*z)*((x*z)*(\sim y)) \leq (x*z)*y.$$

As shown above, $(x*z)*(\sim y)=(x*z)*y=0$, hence we have x*z=0, i.e. $x \leq z$.

Therefore we complete the proof of our statement. Conversely we shall check that a Boolean algebra $B = \langle X, 0, 1, \vee, \wedge, \rangle$ with unit satisfies axioms $1 \sim 5$, where $\sim x$ is the complement of x. **B** is defined by conditions (A) \sim (J). We put $x * y = \sim y \wedge x = \sim (y \vee \sim x)$.

Then $x * y = 0 \iff y \land x = 0 \iff x \leqslant y$.

Next we have $x * y = \sim y \land x \leq x$, which shows axiom 1.

Further $(x * z) * (y * z) = (\neg z \land x) * (\neg z \land y) = \neg (\neg z \land y) \land (\neg z \land x) = (z \land \neg y) \land (\neg z \land x) = \neg y \land \neg z \land x = \neg z \land (\neg y \land x) = \neg z \land (x * y) = (x * y) * = z$. This shows axiom 2. On axiom 3, $x * (y * (\neg x)) = x * (x \land y) = \neg (x \land y) \land x = (\neg x \lor \neg y) \land x = \neg y \land x = x \land (\neg y) = (\neg y) * (\neg x)$. Axioms 4 and 5 follow from the definition of a Boolean algebra.

Hence we have the following

Theorem. A Boolean algebra is characterized by axioms $1\sim 5$. Now we shall prove that the concepts of B-algebra (see [4] and [5]) and Boolean algebra are equivalent. If an algebra M satisfies axioms $1\sim 5$, then by (9) and (16), we have $x*y=(\sim y)*(\sim x)$. Therefore M is a B-algebra. Conversely, the axioms of B-algebra (see [5], axioms $L 1\sim L 4$) imply $x*y=(\sim y)*(\sim x)$ and $x*(x*(\sim y)) \leq x*y$ (see [4] and [5]). Hence $x*(y*(\sim x))=x*(x*(\sim y))\leq x*y=(\sim y)*(\sim x)$, which is axiom 3. Therefore we can formulate the following

Theorem. The concept of B-algebra coincides with the concept of Boolean algebra.

References

- [1] H. B. Curry: Foundations of mathematical logic. New York (1963).
- [2] P. R. Halmos: Lectures on Boolean algebras. Princeton (1963).
- [3] K. Iséki: On axiom systems of propositional calculi. IV. Proc. Japan Acad.,

41, 575–577 (1965).

[4]	:	Algebraic	formulations	of	propositional	calculi.	Proc.	Japan	Acad.,
41 , 803–807 (1965).									

[5] ----: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).