195. A Characterization of Boolean Algebra

By Kiyoshi Iséki

(Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)
In my note [4], I gave an algebraic formulation of propositional calculi. Under the same idea, I shall give a characterization of Boolean algebra. The fundamental axioms are given by the algebraic formulation of E. Mendelson axioms [3].

Let $\langle X, 0, *, \sim\rangle$ be an algebra satisfying the axioms given below, where 0 is an element of a set X, and $*$ is a binary operation and \sim is an unary operation. If $x * y=0, x, y \in X$, we write $x \leqslant y$ and \leqslant introduce an order relation on X.
$1 x * y \leqslant x$,
$2(x * z) *(y * z) \leqslant(x * y) * z$,
$3 x *(y * \sim x) \leqslant(\sim y) *(\sim x)$,
$40 \leqslant x$,
$5 \quad x \leqslant y$ and $y \leqslant x$ imply $x=y$.
If we define $x \vee y=\sim(\sim y * x), x \wedge y=y *(\sim x)$ and put $1=\sim 0$, then we shall prove that the algebra $M=\langle X, 0, *, \sim\rangle$ is a Boolean algebra with 1 as the unit on the operations \vee, \wedge, and \sim. To prove it, we need some lemmas given in [4]. We do not give the proofs of these lemmas (see [4]).
(1) $0 * x=0$.
(2) $x * x=0$.
(3) $x \leqslant y$ and $y \leqslant z$ imply $x \leqslant z$.
(4) $x * y \leqslant z$ implies $x * z \leqslant y$.
(5) $x \leqslant y$ implies $z * y \leqslant z * x$ and $x * z \leqslant y * z$.
(6) $y * x=(y * x) * x$.

The relation of (4) is called the commutative law. Further we shall prove some propositions from the axioms and the propositions (1)~(6) which are proved from the axioms 1 and 2.
(7) $x *(x *(\sim x))=0, x *(\sim x)=x$.

Let $y=x$ in axiom 3, then by axiom 2, we have (7) and $x *(\sim x)=x$ by axiom 1 .
(8) $x *(\sim y) \leqslant y *(\sim x)$.

From axioms 1 and 3, we have

$$
x *(y *(\sim x)) \leqslant(\sim y) *(\sim x) \leqslant \sim y
$$

hence by (4), we have $x *(\sim y) \leqslant y *(\sim x)$.
(9) $x *(\sim y)=y *(\sim x)$.

This follows from (8) (see [4]), and consequently M is a $B N$ algebra. Hence we have $x \leqslant \sim(\sim x)$, and M is an $N B N$-algebra by
theorem 4 in [4]. Hence for any $x, y \in X$, we have $(\sim x) *(\sim y) \leqslant$ $y * x$.
(10) $x *(\sim y) \leqslant y, \quad x * y \leqslant \sim y$.

By (9) and axiom 1 , we have $x *(\sim y)=y *(\sim x) \leqslant y$. Next, if we apply the commutative law, then we have $x * y \leqslant(\sim y)$.
(11) $z * y \leqslant z *(x *(\sim y))$.

The first inequality of (10) and (5) imply (11).
(12) $z *(\sim x) \leqslant z *(y * x)$.

This follows from $y * x \leqslant \sim x$ and (5).
As already noted, \boldsymbol{M} is an $N B N$-algebra, so $(\sim x) *(\sim y) \leqslant y * x$ holds in M. Hence by (5), we have

$$
(y *(x *(\sim y))) *(y * x) \leqslant(y *(x *(\sim y))) *((\sim x) *(\sim y)) .
$$

By axiom 3, the right side of inequality above is 0 , hence we have

$$
y *(x *(\sim y)) \leqslant y * x
$$

Further, by the commutative law, we have
(13) $y *(y * x) \leqslant x *(\sim y)$.

Put $y=\sim x$ in (13), then we have $(\sim x) *((\sim x) * x) \leqslant x *(\sim(\sim x))=0$ by $x \leqslant \sim(\sim x)$. Hence
(14) $(\sim x) *((\sim x) * x)=0$.

Let $z=\sim(\sim x), x=\sim(\sim x)$, and $y=x$ in (11), then by (14), we have (15) $\sim(\sim x) \leqslant x$.

On the other hand, $x \leqslant \sim(\sim x)$ holds in M, hence
(16) $\sim(\sim x)=x$.

In the $B N$-axiom (9) $x *(\sim y)=y *(\sim x)$, substitute $\sim x$ for x, then, by (16), we have $(\sim x) *(\sim y)=y *(\sim(\sim x))=y * x$. Therefore the B-axiom holds, and the $N B$-axiom also holds in M.

In (13), if we substitute x for y, and 0 for x, then we have $x *(x * 0) \leqslant 0 *(\sim x)=0$. Hence $x \leqslant x * 0$. Axiom 1 implies $x * 0 \leqslant x$, therefore we have
(17) $x * 0=x$.

We first verify some simple axioms of the Boolean algebra (for axioms, see [1] or [2]). Several axioms verified are superfluous.
(A) $\sim(\sim x)=x$
is proposition (16).
(B) $x \vee y=y \vee x, \quad x \wedge y=y \wedge x$
are proved by $x \vee y=\sim(\sim y * x)=\sim(\sim x * y)=y \vee x$ and $x \wedge y=y *(\sim x)=$ $x *(\sim y)=y \wedge x$.
(C) $x \wedge 0=0, x \vee 1=1$
follow from $x \wedge 0=0 *(\sim x)=0$ and $x \vee 1=\sim(\sim 1 * x)=\sim(0 * x)=\sim 0=1$.
(D) $x \wedge 1=x, \quad x \vee 0=x$
are proved from $x \wedge 1=1 *(\sim x)=x * 0=x$ and $x \vee 0=\sim(\sim 0 * x)=$ $\sim((\sim x) * 0)=\sim(\sim x)=x$ by using (16) and (17).
(E) $\quad x \wedge(\sim x)=0, x \vee(\sim x)=1$
follow from $x \wedge(\sim x)=\sim x * \sim x=0$ and $x \vee(\sim x)=\sim(\sim(\sim x) * x)=$ $\sim(x * x)=\sim 0=1$.
(F) $x \wedge x=x, x \vee x=x$
are proved by $x \wedge x=x *(\sim x)=x$, and $x \vee x=\sim(\sim x * x)=\sim(\sim x)=x$ by using (17).
(G) $\sim(x \wedge y)=\sim x \vee \sim y, \sim(x \vee y)=\sim x \wedge \sim y$
follow from $\sim(x \wedge y)=\sim(y *(\sim x))=\sim(\sim(\sim x) *(\sim y))=(\sim y) \vee(\sim x)=$ $(\sim x) \vee(\sim y)$, and $\sim(x \vee y)=\sim(\sim((\sim y) * x))=(\sim y) * x=(\sim y) *(\sim(\sim x))=$ $(\sim x) \wedge(\sim y)$.

Next we shall prove $x \wedge(x \vee y)=x, x \vee(x \wedge y)=x$. We first prove
(18) $x *(x *(\sim y * x))=0$, i.e. $x *(\sim y * x)=x$.

By (13) and the $N B$-formula, we have

$$
x *(x *(\sim y * x)) \leqslant(\sim y * x) *(\sim x)=(\sim x * y) *(\sim x)
$$

By axiom 1 and (15), $(\sim x * y) *(\sim x) \leqslant(\sim x) *(\sim x)=0$. Therefore we have the formula (18).

Consider $x \wedge(x \vee y)$, then by the definitions of \wedge, \vee, we have $x \wedge(x \vee y)=x \wedge(\sim(\sim y * x))=\sim(\sim y * x) *(\sim x)=x *((\sim y) * x)=x$ from (18). By the same technique, we have $x \vee(x \wedge y)=x \vee(y *(\sim x))=$ $\sim(\sim(y *(\sim x)) * x)=\sim(\sim x *(y *(\sim x)))=\sim(\sim x)=x$. Hence
(H) $\quad x \wedge(x \vee y)=x, x \vee(x \wedge y)=x$.

Now we are a position to prove the associative law on \wedge, \vee, and distributive law. If we prove these properties, M is a Boolean algebra (see [2]). We shall consider the proof of
(I) $x \wedge(y \wedge z)=(x \wedge y) \wedge z, x \vee(y \vee z)=(x \vee y) \vee z$.
By the definitions of \wedge and \vee, we have
$x \wedge(y \wedge z)=(y \wedge z) *(\sim x)=(z *(\sim y)) *(\sim x)=(y *(\sim z)) *(\sim x)$,
$(x \wedge y) \wedge z=z *(\sim(x \wedge y))=z *(\sim(y *(\sim x)))=(y *(\sim x)) *(\sim z)$
$(x \wedge y) \wedge z=z *(\sim(x \wedge y))=z *(\sim(y *(\sim x)))=(y *(\sim x)) *(\sim z)$
and
$x \vee(y \vee z)=x \vee(\sim(\sim z * y))=\sim((\sim z * y) * x)=\sim((\sim y * z) * x)$,
$(x \vee y) \vee z=(\sim(\sim y * z)) \wedge z=\sim(\sim z *(\sim(\sim y * x)))=\sim((\sim y * x) * z)$.
To prove (I), it is sufficient to verify
(19) $(x * y) * z=(x * z) * y$.

By axioms 2 and 1, we have

$$
(x * y) *((x * z) * y) \leqslant(x *(x * z)) * y \leqslant x *(x * z)
$$

From (13) and axiom 1, we have

$$
x *(x * z) \leqslant z *(\sim x) \leqslant z .
$$

Hence $(x * y) *((x * z) * y) \leqslant z$. Applying the commutative law, we have

$$
(x * y) * z \leqslant(x * z) * y
$$

This implies the formula (19).
Therefore, we have that \boldsymbol{M} is a lattice and $x \vee y, x \wedge y$ are supremum, infimum of x and y on the order \leqslant respectively.

Next we shall prove the distributivity. A simple condition by P. Lorenzen that a lattice be distributive is that
(J) $x \wedge y \leqslant z, x \leqslant y \vee z$ imply $x \leqslant z$.
(For detail, see H. B. Curry [1], p. 137.) The first two conditions are respectively expressed by $y *(\sim x) \leqslant z, \sim z * y \leqslant \sim x$.

From $y *(\sim x) \leqslant z$, we have $x *(\sim y) \leqslant z$. Hence $x * z \leqslant \sim y$.
From $\sim z * y \leqslant \sim x$, we have $\sim z * \sim x \leqslant y$. This shows $x * z \leqslant y$.
Since M is a B-algebra, by axiom 3 , we have

$$
x *(x *(\sim y)) \leqslant x * y
$$

If we substitute $x * z$ for x, then

$$
(x * z) *((x * z) *(\sim y)) \leqslant(x * z) * y
$$

As shown above, $(x * z) *(\sim y)=(x * z) * y=0$, hence we have $x * z=0$, i.e. $x \leqslant z$.

Therefore we complete the proof of our statement. Conversely we shall check that a Boolean algebra $B=\langle X, 0,1, \vee, \wedge, \sim\rangle$ with unit satisfies axioms $1 \sim 5$, where $\sim x$ is the complement of x. \boldsymbol{B} is defined by conditions (A) $\sim(J)$. We put $x * y=\sim y \wedge x=\sim(y \vee \sim x)$.

Then $x * y=0 \Longleftrightarrow \sim y \wedge x=0 \Longleftrightarrow x \leqslant y$.
Next we have $x * y=\sim y \wedge x \leqslant x$, which shows axiom 1 .
Further $(x * z) *(y * z)=(\sim z \wedge x) *(\sim z \wedge y)=\sim(\sim z \wedge y) \wedge(\sim z \wedge x)=$ $(z \wedge \sim y) \wedge(\sim z \wedge x)=\sim y \wedge \sim z \wedge x=\sim z \wedge(\sim y \wedge x)=\sim z \wedge(x * y)=$ $(x * y) *=z$. This shows axiom 2. On axiom $3, x *(y *(\sim x))=x *(x \wedge y)=$ $\sim(x \wedge y) \wedge x=(\sim x \vee \sim y) \wedge x=\sim y \wedge x=x \wedge(\sim y)=(\sim y) *(\sim x)$. Axioms 4 and 5 follow from the definition of a Boolean algebra.

Hence we have the following
Theorem. A Boolean algebra is characterized by axioms 1~5.
Now we shall prove that the concepts of B-algebra (see [4] and [5]) and Boolean algebra are equivalent. If an algebra M satisfies axioms $1 \sim 5$, then by (9) and (16), we have $x * y=(\sim y) *(\sim x)$. Therefore M is a B-algebra. Conversely, the axioms of B-algebra (see [5], axioms $L 1 \sim L 4$) imply $x * y=(\sim y) *(\sim x)$ and $x *(x *(\sim y)) \leqslant$ $x * y$ (see [4] and [5]). Hence $x *(y *(\sim x))=x *(x *(\sim y)) \leqslant x * y=$ $(\sim y) *(\sim x)$, which is axiom 3 . Therefore we can formulate the following

Theorem. The concept of B-algebra coincides with the concept of Boolean algebra.

References

[1] H. B. Curry: Foundations of mathematical logic. New York (1963).
[2] P. R. Halmos: Lectures on Boolean algebras. Princeton (1963).
[3] K. Iséki : On axiom systems of propositional calculi. IV. Proc. Japan Acad.,

41, 575-577 (1965).
[4] -: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[5] -: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).

