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10. Notes on Commutative Archimedean Semigroups. I

By Takayuki TAMURA
Department of Mathematics, University of California, Davis

(Comm. by Kinjir5 KUNUGI, M.J.A., Jan. 12, 1966)

1o Introduction. A commutative semigroup S is archimedean
if and only if for any ordered pair of elements, (a, b), of S there
are an element c of S and a positive integer n (depending on (a, b))
such that a bc. The author proved the following theorem in 5
(or p. 136, [i]).

Theorem 1. If S is a commutative cancellative archimedean
semigroup without idempotent, then S is isomorphic onto the
semigroup of all pairs of non-negative integers and elements of
an abelian group G,

{(n, c); n e N, cre G}, N= {0, 1, 2,... }
wih a non-negagive ingeger valued funcgion I: G G--N where $he

multiplication is defined by
(n, r) (m, )-- (n+m+ I(cr, ),

and I satisfies
(1.1) I(o , Z)= I(, o)
(1.2) I(o, Z)+ I(o,, 7)= I(o, #"/)+ I(Z, 7)
(1.3) For any e G, there is a positive integer m depending on

such tha I(, )>0.
(1.4) I(e, e)=l, e being the identity of G.
Further S is homomorphic onto G, S= m S where each congruence

class S is a linearly ordered set with respect to the ordering
xy defined by x=ay for some positive integer n for a fixed
element a of S.

No satisfactory construction theory has been established in the
following cases: commutative archimedean semigroups with zero and
commutative archimedean semigroups without idempotent in which
cancellation is not assumed, except special cases (see [4, [5, [7).

This paper and the continuation reports the theory of construction
of the two cases just mentioned without proof. These results would
complete the construction theory of commutative archimedean semi-
groups in all cases. The detailed paper will be published elsewhere
[6].

2. Group decomposition. In 2 through 4 S is assumed
to be a commutative archimedean semigroup either without idem-
potent or with zero.
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Lemma 1. If xO, then xCxy for all yes (see [4, 5).
Let a be a fixed non-zero element of S. We define two relations

v and p on S:
xvy if and only if x-ay for some non-negative integer n.

"xvy" will be also denoted by "x_y" or "x<_y". If xbut xcy
then we denote it by x(y.

xpy if and only if ax-a’y for some non-negative integers n,
m. Then v is a compatible partial ordering, namely S is a naturally
partially ordered semigroup with respect to v. The relation p is
congruence on S generated by v.

Theorem 2. The factor semigroup Sip is a group. If S has
a zero, then p-SS namely Sip is a trivial group.

Thus we have a decomposition of S modulo p
S- [J S, G- S/p.

Each congruence class Sx modulo p is still a partially ordered set
and no element of Sx is v-related to any element of S,,

Lemma :. For x e S, ax x and there is no z e S such that
axzx. If bc, then there are a finite number of elements x
between b and c; the set of x forms a chain.

Lemma 4. xy and zy imply xz or x-z or xz.
Lemma 5. The ascending chain condition holds:

x x
terminates at a finite number of terms.

Thus S has maximal elements with respect to v. These are
called primes (to a). The element a itself is a prime (to a).

Lemma 6. Each Sx is a semilattice, namely, any two elements
of Sx have a greatest lower bound in Sx.

Thus S is the set union of disjoint semilattices Sx in the above
sense.

:. Trees. Apart from S, we give a concept of trees in general.
Let L be a semilattice with respect to in which a<_b means
ab-a. The following conditions are equivalent:
(2.1) For any b<c, the set {x; b<_x<_c} is a chain.
(2.2) For any a, the set {x; x<_a} is a chain.
(2.3) For any a, x, yeL either axay or ax_ay.
(2.4) x<z, y<.z imply either x<_y or x>__y.
(2.5) At least two of ab, bc, and ca, are equal for any a, b,
eeL.

A semilattice L is called a tree if one of the above conditions
holds. A tree is called dispersed if any set of the form {x;
is a finite chain.

Let P be a set, N be the set of all non-negative integers.



No. 1 Commutative Archimedean Semigroups. I 37

Consider a mapping of PP into NN
(p, q)-(h(p, q), hq(p, q))

such that h(p, q) and h(p, q) satisfy the following conditions:
(3.1) h(p, q)0 and h(p, q)-- 0 if and only if p-- q
(3.2) h(p,q)--h(q,p).
(3.3) For any p, q, r, at least one of the following three systems
holds

(3.3.1) h(r, p) / h(p, q)-- h(p, q) / hq(q, r),
hq(q, r)h(q, p), h(r, p)--h(q, r)

(3.3.2) h(p, q)/ h(q, r)--h(q, r)/ h(r, p),
h(r, p)h(r, q), h(p, q)-- h(r, p)

(3.3.3) h(q, r)/ h(r, p)=h(r, p)/ h(p, q),
h(p, q)h(p, r), h(q, r)=hq(p, q).

Let L’ be the product set of N and P
L’={(n, p); ne N, pe P}.

Define a quasi-ordering

_
on L’ as follows

(4) (m, q)_(n, p) if and only if
m-hq(p, q) O, n-h(p, q) m--h(p, q)

and then define an equivalence by
5 ) (m, q)(n, p) if and only if (m, q)(n, p) and (m, q)>__(n, p).

Then L-L’/ is a partially ordered set respecting the partial order-
ing induced by _. A partially ordered set is said to satisfy the
abovebounded condition i.f .for any element x there is a maximal
element b such that x<_b.

According to [3, we have
Theorem 3. L is a dispersed tree, wihou smalles element,

satisfying the above bounded condition. Any tree of this kind is
isomorphic with the above-mentioned L.

For the case where a smallest element is, let w: P--N\O be a
positive integer valued function defined on P. Consider a mapping
of PP into N N, (p, q)--(h(p, q), h(p, q)) such that h(p, q)
and h(p, q) satisfy (3.1) through (3.3) additionally (3.4) below

(3.4)
h(p, q) w(p) or all q e P
h(p, q)<_w(q) for all p e P.

L’ is defined as the same as the previous case and is defined as
follows:

where is defined by (5), and ’ is defined as follows:
(m, q)’(n, p) for all m, n, p, q such that nw(p), m>_w(q).

Let L--L’/. Then L is a partially ordered set with respect to
the partial ordering induced by .

Theorem 4. L1 is a dispersed tree, with smallest element,
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satisfying the above-bounded condition. Any tree of this kind is
isomorphic onto L.

4. The Congruence classes. Returning to archimedean semi-
group S, we can say in the following way:

If S has no idempotent then each Sx is a dispersed tree, without
smallest element, satisfying the ascending chain condition; if S has
a zero, then S is a dispersed tree, with smallest element, satisfying
the ascending chain condition.

The functions h(p, q), hq(p, q) given in Sx are denoted by
h()(p, q), h(q)(p, q), respectively.

We define a relation ] on S as follows:
xy if and only if ax-ay for some positive integer n where

a is originally fixed.
Theorem 5. The relation is the smallest cancellative con-

gruence on S. If S has no idempotent, S/ is a commutative
archimedean semigroup without idempotent. If S has a zero,
SxS.

By a maximal ascending chain rom b we mean a sequence of
elements of S

b--bobb.... b-p
where p is a prime and there is no element between b_ and
b(i-l,...,n). The number n is called the length of the maximal
ascending chain from b.

Lemma 7. For a fixed be S, the set of the lengths of all
maximal chains from b is bounded.

By a maximal descending chain from a prime p we mean a
sequence of elements of S

C" p-CoCC... c...
where c_x>c, for no x e S. For a fixed C, let f(n) denote the
maximum of the lengths of all maximal ascending chains from c.
Let f(0)-- 0.

Lemma 8. The set {f(n)--n; n-0, 1, 2,...} is bounded above,
namely, there is a non-negative integer k such tha

f(n)-n <_k for all n.
This lemma can be restated as follows: Let p be a fixed prime

in S. There is a prime p0 in Sx such that
( 6 h(X)(po p)--h()(po, p):>h(x)( p)--h()(p., p)

for all primes
For any prime p, in Sx we define non-negative integer-valued func-
tions as follows:

(7)
x(p,)_ (x)t p,).vp \/0
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Lemma 9. A prime Po satisfies (6) if and only if
ax(p)>_O for all primes p in Sx.

Such a prime p0 is called a highest prime.
Theorem 6. If S has no idempotent, then each Sx, 2 e G, is

a dispersed tree withouv smallest element. If S has a zero, then
GI=I, S is a dispersed tree with smallest element. In both cases

the trees satisfy the ascending chain condition, and each Sx has
at least one highest prime to a.

5. Construction of special case. Assume that the following
systems and functions are given"
(8.1) G:an abelian group whose elements are denoted by 2, ,...
(8.2) N: the set of all non-negative integers
(8.3) I(2, ): a function of G G into N satisfying (1.1), (1.2), (1.3),

and (1.4) in Theorem 1.
(8.4) {Px; 2 e G}: a family of disjoint sets Px with functions hX)(a, ),

hX)(a, ) satisfying (3.1) through (3.3) such that
a()0 and (a)a(a)+l for all e

A chosen highest prime in Sx is denoted by tx. (Sx denotes L in 2.)
Let $ denote the relation (5) on Sx, and Cx the relation (4)

on Sx and let

= U , = , S=, lS=
k

where ]Sx is the restriction of to Sx.
Then the set (NxP)/ is a partially ordered set and

(NP)/= ((N P)/).
hG

Let h(, ) be the function on PxP obtained by uniting hX(,
through e G:

(, Z)- hi(, Z), h,(, Z)= U h(, Z)
kG G

and also

For convenience we state the definition of $:

( 9 (n, a)(m, ) if and only if a and Z are in a same Px for some
2 e G, and n-h(a, )=m-h(a, )0.

We define a binary operation on P as follows:
For any axe Px and , e P,, choose a prime fix, e Px, such that

(0) a(a)+ a(Z)+(, g)().
This is always possible since we can take at least =tx. Such
is not unique but we choose one of those, and fix, is denoted by

Additionally we ean require

(11)
xe.-e.x-x for all x. (s is the identity of G)
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Thus we have a commutative groupoid P with identity t, and the
groupoid P is homomorphic onto G.

Next we define a function K(cx, f,) on PP as ollows:
(12)
where cxf, is the product in the groupoid P just obtained. K is a
non-negative integer valued function and immediately

K(a, Z,)- K(f,, a)
(13)

K(6, :)--1 for all 6, all 2 e G.
For the given groupoid P, and for the given function K, we define
a binary operation on S:
(la) (n,
This definition (14) is given for elements of NP, but we can show
that it is single valued on S-(NP)/ and that the system S with
(14) satisfies all our requirements.

Theorem 7. The S constructed above is a commutative
archimedean semigroup without idempotent.

Theorem 7 gives the construction of a special case. The general
case together with commutative archimedean semigroups with zero
will be discussed in the second part of this paper.
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