21. Regularity of Orbits Space on Semisimple Lie Groups

By Nobuhiko TATSUUMA

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1966)

1. Let G be a semisimple Lie group, and KHN be its Iwasawa decomposition, M be the subgroup $K \cap \mathfrak{C}(H)$ where $\mathfrak{C}(H)$ shows the centralizer of H.

F. Bruhat [1] shows that $\Gamma = MHN$ is a closed subgroup of G, and G is a disjoint sum of finite $\Gamma - \Gamma$ double cosets which correspond to elements of Weyl group in one-to-one way.

While denote by $G^t = G \times \cdots \times G$ the direct product of G with multiplicity t and by $\widetilde{G}_t = \{(g, \dots, g) \in G^t\}$ the diagonal subgroup of G^t , which is isomorphic to G.

There exists a question whether Γ^t and \tilde{G}_t are regularly related in G^t or not, in the sense of Mackey [2]. This problem is related to a problem of decomposability of Kronecker product of induced representations of G by representations of Γ , with multiplicity t(cf. [3]).

The purpose of this work is to solve this problem affirmatively. Proposition. Γ^t and \tilde{G}_t are regularly related in G^t .

2. Proof of the proposition. At first, we can equate $\Gamma^t \backslash G^t / \tilde{G}_t$ to $\Gamma^{t-1} \backslash G^{t-1} / \tilde{\Gamma}_{t-1}$ by the map of representatives of cosets, $G^t \ni (g_1, g_2, \dots, g_t) \longrightarrow (g_1 g_t^{-1}, g_2 g_t^{-1}, \dots, g_{t-1} g_t^{-1}) \in G^{t-1}$.

Using Glimms results [4], we can conclude that $\Gamma \setminus G/\Gamma$ is T_0 and the union of all lower dimensional Γ - Γ double cosets in G becomes a null set F in G, and G' = G - F is open as a union of open cosets. Therefore it is sufficient to show the space $\Gamma^{t-1} \setminus (G')^{t-1}/\widetilde{\Gamma}_{t-1}$ is countably separated.

Again by [4], the last space is countably separated if and only if it is T_0 . And for fixed l and closed subgroups $A \supset B$ in Γ^i , if $\Gamma^i \backslash (G')^i / A$ and $\hat{g} \Gamma^i \hat{g}^{-1} \cap A \backslash A / B$ are T_0 for any \hat{g} in $(G')^i$, then $\Gamma^i \backslash (G')^i / B$ is T_0 .

In this case, we put $A = \widetilde{\Gamma}_{l-1} \times \Gamma = \{(\gamma, \dots, \gamma, \gamma') \in \Gamma^l\}$ and $B = \widetilde{\Gamma}_l$. Then easily we get, $\Gamma^l \backslash (G')^l / \widetilde{\Gamma}_{l-1} \times \Gamma \sim \Gamma^{l-1} \backslash (G')^{l-1} / \widetilde{\Gamma}_{l-1} \times \Gamma \backslash G' / \Gamma$ and $\widehat{g}\Gamma^l \widehat{g}^{-1} \cap A \backslash A / B \sim \Gamma^{l-1} (\widehat{g}) \times \Gamma^{1} (g_l) \backslash \Gamma \times \Gamma / \widetilde{\Gamma}_2 \sim \Gamma^{l-1} (\widehat{g}) \backslash \Gamma / \Gamma^{1} (g_l)$, where $\Gamma^{l-1} (\widehat{g}) = \Gamma \cap g_1 \Gamma g_1^{-1} \cap g_2 \Gamma g_2^{-1} \cap \cdots \cap g_{l-1} \Gamma_{g_{l-1}}^{-1}$, and $\Gamma^1 (g_l) = g_l \Gamma g_l^{-1} \cap \Gamma$, for $\widehat{g} = (g_1, g_2, \dots, g_l)$ in $(G')^l$. Consequently, if we prove $\Gamma^{l-1} (\widehat{g}) \backslash \Gamma / \Gamma^1 (g_l)$ is T_0 , then by the induction with respect to l, we get the proof.

Now we shall show that $\Gamma^{i}(g)$ is conjugate to MH in Γ for any

g in G'. In fact, as shown in [1], for any g in G, there exists a s(g) in $\Gamma g\Gamma$ such that $\Gamma^{i}(s(g)) = MHN_{s(g)}$, where $N_{s(g)} = N \cap s(g)Ns(g)^{-1}$. But calculations of dim $\Gamma^{i}(g) = \dim \Gamma^{i}(s(g))$ result if dim $G = \dim \Gamma g\Gamma = \dim \Gamma s(g)\Gamma$ then $N_{s(g)} = \{e\}$, i.e. $\Gamma^{i}(s(g)) = MH$, which is conjugate to $\Gamma^{i}(g)$ in Γ .

The space $\Gamma/\Gamma^{1}(g) \sim \Gamma/\Gamma^{1}(s(g)) = \Gamma/MH$ is homeomorphic to N, therefore to its Lie algebra n too. So $\Gamma^{l-1}(\hat{g}) \setminus \Gamma/\Gamma^{1}(g_{l}) \sim \Gamma^{l-1}(\hat{g}) \setminus \Gamma/MH$ is homeomorphic to the orbits space by the operations $\{ad \gamma\}$ of adjoint representation restricted on n for γ in $\Gamma^{l-1}(\hat{g})$ which is conjugate to a subgroup Γ' of MH in Γ . The general theory of Lie algebras gives, that n is generated by roots vectors E_{α} of ad h such that

 $(\operatorname{ad} h)E_{\alpha} = e^{\alpha(\mathfrak{h})}E_{\alpha}, \text{ for } h = \exp \mathfrak{h} \text{ in } H.$

Since any *m* in *M* commutes with all *h* in *H*, {ad *m*} is a representation of compact group *M* with orthogonal matrices, which makes invariant the subspace n_{λ} spanned by E_{α} 's such that α 's give a same real linear form λ on *H*. Let the projection of *X* in *n* to n_{λ} be X_{λ} , so $\Omega_J = \{X: X_{\lambda_J} = 0, j \in J\}$ for some set *J* of indices is a closed subspace in *n*. It is enough to prove the proposition, we show that each orbit $\{(ad \gamma)X: \gamma \in \Gamma'\}$ is closed in $\Omega_J - \bigcup_{J_1 \in J} \Omega_{J_1}$ which contains *X*.

For given $\hat{g} = (g_1, \dots, g_l)$, we take $(s(g_j))(=s_j)$ as above, and let $g_j = \gamma_j s_j \gamma'_j$, $(\gamma_j, \gamma'_j \in \Gamma)$, and $\gamma_j = n_j h_j m_j$, $n_j \in N$, $h_j \in H$, $m_j \in M$. Then it is easy to see $\Gamma^{l-1}(\hat{g})$ is conjugate to

$$egin{aligned} \Gamma' &= \Gamma \cap \gamma_1 s_1 \Gamma s_1^{-1} \Gamma \gamma_1^{-1} \cap \cdots \cap \gamma_{l-2} s_{l-2} \Gamma s_{l-2}^{-1} \gamma_{l-2}^{-1} \cap s_{l-1} \Gamma s_{l-1}^{-1}, \ &= \gamma_1 (\Gamma \cap s_1 \Gamma s_1^{-1}) \gamma_1^{-1} \cap \cdots \cap \gamma_{l-2} (\Gamma \cap s_{l-2} \Gamma s_{l-2}^{-1}) \gamma_{l-2}^{-1} \ &\cap (\Gamma \cap s_{l-1} \Gamma s_{l-1}^{-1}) \ &= \gamma_1 M H \gamma_1^{-1} \cap \cdots \cap \gamma_{l-2} M H \gamma_{l-2}^{-1} \cap M H \ &= n_1 M H n_1^{-1} \cap \cdots \cap n_{l-2} M H n_{l-2}^{-1} \cap M H, \end{aligned}$$

in Γ . According to the uniqueness of decomposition $\Gamma = MHN$, we get that Γ' is commutator of $(n_1, n_2, \dots, n_{l-2})$ in MH, that is, the subgroup of MH consists of $\gamma = mh$ such that $(ad mh)X_j = X_j$ $(1 \leq j \leq l-2)$ for $n_j = \exp X_j$. Let $X_j = \Sigma(X_j)_{\lambda}$, $(X_j)_{\lambda} \in \mathfrak{n}_{\lambda}$, then these relations are equivalent to $(ad mh)(X_j)_{\lambda} = e^{\lambda(\mathfrak{h})}(ad m)(X_j)_{\lambda} = (X_j)_{\lambda}$. While (ad m) is an orthogonal transformation and $\lambda(\mathfrak{h})$ is real, so $(ad m)(X_j)_{\lambda} = (X_j)_{\lambda}$, and $e^{\lambda(\mathfrak{h})}(X_j)_{\lambda} = (X_j)_{\lambda}$. Consequently, Γ' is a direct product of a closed subgroup M_0 in M and a vector subgroup H_0 in H.

If a sequence $\{(\operatorname{ad} m_k h_k)X_1: m_k \in M_0, h_k \in H_0\}$ in a Γ' -orbit which is contained in some $\Omega_J - \bigcup_{J_1 \not\cong J} \Omega_{J_1}$, converges to X_0 in the same space, then each component $(\operatorname{ad} m_k h_k)(X_1)_{\lambda_j}$ converges to $(X_0)_{\lambda_j}$, which are not zero for only $j \notin J$. This means their norms $e^{\lambda_j(\mathfrak{h}_k)} || (X_1)_{\lambda_j} ||$ converges to non-zero finite value $|| (X_0)_{\lambda_j} ||$, and since H_0 is a vector subgroup of H, there exist a h_0 in H_0 such that $|| (\operatorname{ad} h_0)(X_1)_{\lambda_j} || =$ $|| (X_0)_{\lambda_j} ||$.

N. TATSUUMA

The compactness of M_0 assures the existence of subsequence of $\{(\operatorname{ad} m_k)X_1\}$ which converges to some $(\operatorname{ad} m_0)X_1$. That is, there is a subsequence converging to $(\operatorname{ad} m_0h_0)X_1$ in this Γ' -orbit, obviously the limit of which must coincide to X_0 . I.e., each orbit is closed in $\Omega_J - \bigcup_{J_1 \cong J} \Omega_{J_1}$. This completes the proof.

References

- F. Bruhat: Sur les représentations induits des groupes de Lie. Bull. Soc. Math. France, 84, 97-205 (1956).
- [2] G. W. Mackey: Induced representations of locally compact groups. I. Ann. of Math., 55, 101-139 (1952).
- [3] N. Tatsuuma: A duality theorem for the locally compact groups. III. Proc. Japan Acad., 42, 87-90 (1966).
- [4] J. Glimm: Locally compact transformation groups. Trans. Amer. Math. Soc., 101, 124-138 (1961).