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17. Algebraic Proof of the Separation Theorem on
Classical Propositional Calculus

By Tsutomu Hoso
Mathematical Institute, University of Tokyo

(Comm. by Zyoiti SUETUa, .J.a., Feb. 12, 1966)

In our previous paper [2], it is shown that we can so axiomatize
the classical predicate calculus that the separation theorem, mentioned
below, holds on it:

Separation Theorem: A classically provable formula can be
proved by using a mos he axioms for implication and $hose of
$he connectives which actually appear in he formula.

An example of the propositional fragment of such axiom systems
is:

I.i pqp.
1.2 (pqr)(pq)(pr).
1.3 ((pq)p)p.
1.4 p&qp and p&qq.
1.5 (pq)(pr)(pq&r).
1.6 ppVq and qpVq.
1.7 (pr)(qr)(pVqr).
1.8 (pq)(qp)..
1.9 ppq.

The rules of inference are modus ponens and the rule of substitution
for variables. We associate to the right and assume the convention
that implication binds less strongly than other connectives. This
system is classical, for we obtain from 1.3 the law of excluded middle
by putting p r V r and q r& r.

In [2, we proved the separation theorem by using Gentzen’s cut
elimination theorem on the classical predicate calculus. And in this
paper is given an algebraic proof of the theorem on the propositional
calculus defined above. The algebraic proof of the theorem on the
intuitionistic propositional calculus was given by Horn [1. And his
system is obtained from our system by deleting 1.3. He defined alge-
bras called I, IN, ID, IC, IDN, ICN, ICD, or ICDN and reduced the
proof of the theorem to the problem of embedding each algebra into
an ICDN algebra. We will not give the details of Horn’s paper but
borrow some definitions and results from it, so see his paper for those.

Horn first embedded algebras without N into those with N, which
was not so complicated. And then he treated the algebras without
C, and finally the case of algebras without D, which was the most
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complicated. But the situation is quite different in the classical
calculus, where the case of attaching D to algebras without D is
easily treated since / can be defined in terms of . Only the case
of attaching N required us some technics, owing perhaps to the fact
that any algebra can be regarded as an ICDN algebra only if N is
attached to it.

Our definition of algebras differs only in defining an I algebra.
An I algebra must satisfy the following conditions.

2.1 If 1-x=1, then x=l.
2.2 If x-y-=y-x--1, then x--y.
2.3 x--.y--x--1.
2.4 (x--y--z)--(x-y)--(x--z)= 1.
2.5 ((x--y)--x)-x= 1.

The last is the one added to Horn’s definition.
Now we proceed to solve the embedding problem.
In an I algebra, we introduce a new function / by x /y=(x-y)-y.

Then the following identities hold.
3.1 x+y-y/x.
3.2 x--(x+y)= 1 and y--(x + y)-- 1.
3.3 (x--.z)--(y--.z)-((x+y)-z)-- 1.

The first is obtained as follows. By 2.5, ((x--y)---x)x. Hence
((x-y)--.y)-((y--x)--*x) >= ((x--*y)--*y)--((y--x)--*((x--*y)--*x))-- (x--*y)---
((x--.y)-y)-(y--x)--.x=l. 3.2 is immediate from x-((x--y)--y)=l
and from 3.1. And 3.3 is proved as follows. (x--z)--(y--z)-(((x-
y ) x- z (x- y y- z x (x- y
y)-*y) (x--*z)--*(z--y)-(((x--y)-y)--,y) (x--,z)--*(z-y)--*((y-(x--y))
--.(x--.y))-- (x--z)---(z--y)--(x--*y)-= 1.

4.1 Lemma: Any I (or IN, or IC, or ICN) algebra can be
embedded in an ID (or IDN, or ICD, or ICDN) algebra .

Proof. As . we take the same algebra /. In . we define
x/y as above, and as the embedding mapping we take the identity
mapping. Then the algebra is easily seen to be the desired one.

4.2 Lemma: Any ID (or IDN) algebra can be embedded in
an ICD (or ICDN) algebra .

Proof. We can prove this lemma in the same way as Horn did
his 8.5. It will be sufficient if only we add the case of 2.5 to the
proof of Horn’s 7.1. When A is a and B is b, ((A--B)--.A)--.A=I
by 2.5. If A is a and B is bB’, ((a--bB’)-a)--a=((a--B’)
(ab)--,a)-,a=((aB’)-((ab)--a))-a>=((a--.B’)-a)-a= 1. If A is
a [2 A’, it is sufficient for us to prove ((a A’B)-a A’)a= 1. But
((aOA’--B)-aon’)--.a ((a(JA’ -B)--.a)D((aJA’--B)-n’)-a=
((a-(A’--B))--a) U ((A’(a-B))A’)a>= a [3 A’-a= 1.

4.3 Lemma: Any ICD algebra . can be embedded in an ICDN
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algebra ..
Proof. Case 1. If / has the smallest element 0, we take

as _. And we define -x by x-.0. Then it is easily seen that
is an ICDN algebra. If we take the identity mapping as the em-
bedding mapping, then the lemma is proved.

Case 2. If / has not the smallest element, we define . as the
set UJ’, where /’ is the set {x’; x e } (by x’ we only mean a
new symbol obtained by putting to x which is an element of
By the definition, / and /’ are mutually disjoint. If x, y e /, then
x--y, xy, and x+y are defined in . as the same as in /. And also
we define as follows.

x’-y’ y--x, x--y’= (xy)’. x’-y= x + y.
x’y’ v’x’ x + y)’ xy’ y’x x-y)’
x’ + y’ y’ + x’ (xy)’. x + y’ y’+ x y--.x.
-x=x-l’ (=x’). (x’)=x’-l’ (=x).

In _, 1’ is the smallest element, since l’--.x=l+x=l for any xe
and l’-x’=x--l=l for any x’e ’.

Now we show that 2.5 holds for any elements x and y of . If
x, y e //, then ((x--y)-x)--x= 1 by the definition. If x=u’
(u e ) and y e /, then ((u’--y)-u’)-u’=((u/ y)--u’)-u’--
(u+ y)u= 1. If x e /and y=u’ e ’ (u e /), then ((x-u’)--x)--x=
((xu)’-x)--.x=(xu)+x-x=l. If x=u’, y=v’ e ’ (u, ve t), then
((u’ v’)-u’)-u’ ((v-u)-u’)-u’=((v-u)u)’-u’=u-(v-u)u= 1.
We can treat other axioms in the same way, and it is not so difficult
but rather tedious, so we do not show the rests any more. So we
know that

_
is a pseudo ICDN algebra.

Next we show that . is an ICDN algebra, that is, we prove that
2.2 holds in _. If both x and y belong to / (or /’), then 2.2
obviously holds by the definition. If x=u’e ’ and y e /, then
x--,y--u’--oy-----u/y e , and y--u’--(yu)’ e ,_it’. But x---y=---y---x by
the hypothesis, so u+y=(yu)’e tt’, contrary to /’=. So
2.2 holds vacuously. Hence

_
is an ICDN algebra. And as in the

case 1, our lemma is proved by taking the identity mapping as the
embedding mapping.

By the three lemmas proved above, our problem has been com-
pletely solved.
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