71. On Holomorphic Markov Processes

By Kôsaku Yosida

Department of Mathematics, University of Tokyo

(Comm. by Zyoiti SUETUNA, M.J.A., April 12, 1966)

Under appropriate regularity conditions, a temporally homogeneous Markov process is associated with a contraction semi-group $\{T_t; t \ge 0\}$ of class (C_0) [1] in a suitable Banach space X. In certain cases where X are complex Banach spaces, T_t admits a holomorphic extension T_{λ} given by strongly convergent Taylor series for all $x \in X$:

(1)
$$T_{\lambda}x = \sum_{n=0}^{\infty} \frac{(\lambda-t)^n}{n!} T_t^{(n)}x$$
 for $\frac{|\lambda-t|}{t} \leq \text{some positive constant } C$,

the existence of the *n*-th strong derivative $T_t^{(n)}x$ in x of T_tx being assumed for any t>0 and any $x \in X$ $(n=1, 2, \dots)$. Such is the case of the semi-group

$$(2) (T_t f)(x) = (2\pi t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-|x-y|^2/2t} f(y) dy (t>0), \\ = f(x) (t=0)$$

in the Banach space $C[-\infty, \infty]$ of bounded uniformly continuous, complex valued functions f(x) on $(-\infty, \infty)$ endowed with the maximum norm. Suggested by this example, we shall call a Markov process a holomorphic Markov process if the associated semi-group T_t admits a holomorphic extension T_t of the form given in (1). This notion seems to be of some interest. For instance, we can prove

Proposition. Let a semi-group T_t with the infinitesimal generator A be associated with a holomorphic Markov process through

$$(3) \qquad (T_t f)(x) = \int P(t, x, dy) f(y), \qquad f \in X$$

where P(t, x, dy) is the transition probability of this process. Suppose that $T_{t_0}f_0=0$ for some $t_0>0$ and $f_0\in X$. Then $f_0=0$.

Proof. We have $A^n T_{t_0} f_0 = T_{t_0}^{(n)} f_0 = 0$ $(n=0, 1, \cdots)$ by the linearity of A. Hence, by Taylor expansion (1), we see that $T_{\lambda} f_0 = 0$ for $|\lambda - t|/t \leq C$. Repeating the argument, we easily see that $T_t f_0 = 0$ for all t > 0 and so $f_0 = s - \lim_{t \neq 0} T_t f_0 = 0$.

There are abundant examples of holomorphic Markov processes. In fact, the fractional power [2] \hat{A}_{α} (0< α <1) of the infinitesimal generator A of a contraction semi-group T_t of class (C_0) generates a construction semi-group $\hat{T}_{t,\alpha}$ of class (C_0) which admits a holomorphic extension $\hat{T}_{\lambda,\alpha}$ of the similar form given in (1). Moreover, since

 $(4) \quad \widehat{T}_{t,\alpha}x = \int_{0}^{\infty} f_{t,\alpha}(s) T_{s}xds \quad \text{with} \quad \text{a function} \quad f_{t,\alpha}(s) \ge 0 \quad \text{satisfying} \\ \int_{0}^{\infty} f_{t,\alpha}(s)ds = 1,$

we see that $\hat{T}_{t,\alpha}$ is associated with a holomorphic Markov process if T_t is associated with a Markov process.

The purpose of the present note is to devise another method for the construction of holomorphic Markov processes. It is based upon

Theorem. Let B be the infinitesimal generator of an equicontinuous group of class (C_0) in a complex Banach space X. Then $A=B^2$ is the infinitesimal generator of an equi-continuous semi-group of class (C_0) which is also a holomorphic semi-group [3] characterized by any one of the following three conditions:

(I) For all t>0, $T_iX \subseteq D(A)$, the domain of A, and there exists a positive constant C_1 such that the family of operators $\{(C_1t T'_i)^n; 0 < t \leq 1, n=0, 1, \cdots\}$ is equi-continuous.

(II) T_t admits a holomorphic extension T_{λ} of the form given in (1) such that the family of operators $\{e^{-\lambda}T_{\lambda}; |\arg \lambda| \leq \tan (k^{-1}C_1)$ with some fixed $k > 0\}$ is equi-continuous.

(III) There exists a positive constant C_2 such that the family of operators $\{(C_2\lambda(\lambda I-A)^{-1})^n; Re(\lambda) \ge 1 \text{ and } n=0, 1, \cdots\}$ is equicontinuous.

Proof. Since B generates an equi-continuous group of class (C_0) , D(B) is dense in X and the resolvents $(\sqrt{\lambda}I \pm B)^{-1}$ both exist as bounded linear operators on X into X for $Re(\sqrt{\lambda}) > 0$ satisfying the condition

(5) {
$$(Re(\sqrt{\lambda})(\sqrt{\lambda}I\pm B)^{-1})^n$$
; $Re(\sqrt{\lambda})>0$ and $n=0, 1, \dots$ } is equi-continuous.

Thus, by

(6) $(\lambda I - A)^{-1} = (\sqrt{\lambda} I - B)^{-1} (\sqrt{\lambda} I + B)^{-1} (Re(\lambda) > 0)$ we see that D(A) = the range of $(\lambda I - A)^{-1}$ is dense in X with D(B). (6) implies also that

(7) { $(\lambda(\lambda I-A)^{-1})^n$ = $(\sqrt{\lambda}(\sqrt{\lambda}I-B)^{-1}\cdot\sqrt{\lambda}(\sqrt{\lambda}I+B)^{-1})^n; \lambda>0, n=0, 1, 2, \cdots$ }

is equi-continuous.

Hence A generates an equi-continuous semi-group of class (C_0) . Moreover,

$$\begin{cases} \left(\left(\sqrt{1+\tau^2}\cos^2\left(\frac{1}{2}\tan^{-1}\tau\right)((1+i\tau)I-A)^{-1}\right) \right)^n \right\} \\ = \{ (Re\ (\sqrt{1+i\tau})(\sqrt{1+i\tau}I-B)^{-1}\ Re\ (\sqrt{1+i\tau})(\sqrt{1+i\tau}\ I+B)^{-1})^n \} \end{cases}$$

is equi-continuous in $-\infty < \tau < \infty$ and in $n=0, 1, \cdots$. Hence, by (III), the operator A generates a holomorphic semi-group.

An example of holomorphic Markov processes. Let $X = C[-\infty, \infty]$ and consider the operator

(8)
$$A = a^2(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx} + q(x).$$

Suppose that a(x), a'(x), b(x), and q(x) are uniformly continuous, bounded real-valued functions in $(-\infty, \infty)$ satisfying conditions

(9) $q(x) \leq 0$ and $0 < \delta \leq a(x)$ in $(-\infty, \infty)$, where δ is a positive constant.

Then A generates a contraction holomorphic semi-group T_t in X which is *positive*, i.e., $f(x) \ge 0$ in $(-\infty, \infty)$ implies $(T_t f)(x) \ge 0$ in $(-\infty, \infty)$. Thus T_t is associated with a holomorphic Markov process.

Proof. A may be written as

(8)'
$$A = \left(a(x)\frac{d}{dx}\right)^{\varepsilon} + p(x)\frac{d}{dx} - \varepsilon \frac{d}{dx} + q(x), \text{ where}$$
$$p(x) = b(x) - a(x)a'(x) + \varepsilon \text{ and } \varepsilon > 2 \sup_{-\infty < x < \infty} |[b(x) - a(x)a'(x)]|.$$

We shall prove (i): $E = \left(a \frac{d}{dx}\right)^{z}$ generates a contraction positive holomorphic semi-group in X, (ii): $p \frac{d}{dx}$ and $-\varepsilon \frac{d}{dx}$ both generate contraction positive semi-groups of class (C_{0}) in X, (iii): q(x) generates a contraction positive semi-group of class (C_{0}) in X, (iv): for $1 > \alpha > \frac{1}{2}$, the domain $D\left(p\frac{d}{dx}\right)$ contains the domain $D(\hat{E}_{\alpha})$, where \hat{E}_{α} is the fractional power operator of E and (v): for $1 > \alpha > \frac{1}{2}$, the domain $D\left(-\varepsilon \frac{d}{dx}\right)$ contains the domain $D(\hat{F}_{\alpha})$, where \hat{F}_{α} is the fractional power operator of $F = E + p \frac{d}{dx}$ with the domain D(F) = D(E).

Then, by a theorem proved in a preceding note in these Proceedings [4], $F = \left(E + p \frac{d}{dx}\right)$ generates a contraction holomorphic semi-group in X. By H. F. Trotter's product formula [5], we have $e^{t\left(\mathbb{B}+p\frac{d}{dx}\right)} = s - \lim_{n \to \infty} \left(e^{\frac{t}{n}\mathbb{B}} \cdot e^{\frac{t}{n}p\frac{d}{dx}}\right)^n$

so that the semi-group $e^{t\left(E+p\frac{d}{dx}\right)}$ generated by F is positive by the positivity of semi-groups e^{tE} and $e^{tp\frac{d}{dx}}$. Similarly, by (v), $F-\varepsilon\frac{d}{dx}$ with the domain $D\left(F-\varepsilon\frac{d}{dx}\right)=D(F)$ generates a positive contraction.

K. YOSIDA

tion holomorphic semi-group in X. The multiplication operator q is a bounded operator in X which generates a positive contraction semi-group of class (C_0) in X by (iii). Hence, by a similar argument as above, $A = F - \varepsilon \frac{d}{dr} + q$ with the domain D(A) = D(F) generates a positive contraction holomorphic semi-group in X.

The proof of (i) through (iv) is given as follows.

(i): $B=a\frac{d}{dx}$ generates a positive contraction group of class

 (C_0) in X of translations

$$f(x(y)) \rightarrow f(x(y \pm t))$$
, where $y(x) = \int_0^x a(s)^{-1} ds$.

Hence the resolvents $(\sqrt{\lambda}I \pm B)^{-1}$ are positive operators in X for $\lambda > 0$ and so $(\lambda I - E)^{-1} = (\sqrt{\lambda} I - B)^{-1} (\sqrt{\lambda} I + B)^{-1}$ is a positive operator in X. Thus, remembering the Theorem and the representation $e^{tE} = s - \lim_{n \to \infty} \left(I - \frac{t}{n} E \right)^{-n}$, we have proved (i). (ii): As in (i), we prove that $p \frac{d}{dx}$ and $-\varepsilon \frac{d}{dx}$ both generate

positive contraction group of class (C_0) in X. (iv). The resolvent of \hat{E}_{α} is given by T. Kato's formula [6]

(10) (
$$\lambda I - \hat{E}_{\alpha}$$
)⁻¹ = $\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} (rI - E)^{-1} \frac{r^{\alpha}}{\lambda^{2} - 2\lambda r^{\alpha} \cos \alpha \pi + r^{2\alpha}} dr$.

We have

$$B(rI-E)^{-1} = B(\sqrt{r}I-B)^{-1}(\sqrt{r}I+B)^{-1} = (\sqrt{r}(\sqrt{r}I-B)^{-1}-I)(\sqrt{r}I+B)^{-1}$$

and so, by $||(\sqrt{r}I+B)^{-1}|| \leq r^{-1/2}$, we see that the right side of $\beta = \alpha \pi \int_{-\infty}^{\infty} \beta = \alpha \pi \int_{$ r^{α} 1.00

$$B(\lambda I - E_{\alpha})^{-1} = \frac{1}{\pi} \int_{0}^{0} B(rI - E)^{-1} \frac{1}{\lambda^{2} - 2\lambda r^{\alpha} \cos \alpha \pi + r^{2\alpha}} dr$$

converges when $1 > \alpha > \frac{1}{2}$. This proves (iv).

(v): Remembering

$$egin{aligned} B(rI\!-\!F)^{-1}\!=\!B(I\!-\!F)^{-1}(I\!-\!F)(rI\!-\!F)^{-1}\ =\!B(I\!-\!F)\!\cdot\![(rI\!-\!F)^{-1}\!+\!I\!-\!r(rI\!-\!F)^{-1}]\ =\!O(r^{-1}) & ext{for small } r \end{aligned}$$

and

$$\begin{split} B(rI-F)^{-1} &= B(rI-E)^{-1} \Big\{ I - p \frac{d}{dx} (rI-E)^{-1} \Big\}^{-1} \\ &= O(r^{-1/2}) \quad \text{ for large } r, \end{split}$$

we prove (v) as in (iv).

Remark. That b(x) in (8) may change sign on $(-\infty, \infty)$ was suggested, thanks to a conversation with Professor S. Ito and Dr. H. Tanaka.

References

- [1] E. Hille-R. S. Phillips: Functional Analysis and Semi-groups. Providence (1957); K. Yosida: Functional Analysis. Springer (1965).
- [2] K. Yosida: Loc. cit.
- [3] —: Loc. cit.
- [4] ——: A perturbation theorem for semi-groups of linear operators. Proc. Japan Acad., 41 (8), 645-647 (1965).
- [5] H. F. Trotter: On the product of semi-groups of operators. Proc. Amer. Math. Soc., 10, 545-551 (1959).
- [6] See, for instance, K. Yosida: Loc. cit.