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122. Non.Connection Methods for Some Connection
Geometries based on Canonical Equations

of Hamiltonian Types of
II.Geodesic Curves
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Tohoku University, Sendai

(Comm. by Zyoiti SUETUNA, M.J.A., June 13, 1966)

In [3], I established non-connection methods for linear connections
in the Large bringing respective geometries to the "Erlanger
Programm", the transformation group parameters being adequate
functions of the (local)coordinates and in [4 he extended them
further doubly to the case, where transformation group parameters
are adequate functions of the (local) coordinates (x) as well as of

(, , ..., x ), (2=dx/dt, etc.; t=curve parameter). In 5, [6, and
[8, M. Kurita studied the Finsler spaces by means of the canonical
equations of Hamiltonian types. In this note, I will, being suggested
by his means, establish the following geometries based on canonical
equations of Hamiltonian types of the II-geodesic curves in my sense:
(I) (Doubly)extended affine geometry, (II) (Doubly) extended Euclidean
geometry, (III) Other 20 (doubly) extended geometries indicated on
p. 247 of [14, (IV) Geometry of Finsler-Craig-Synge-Kawaguchi
spaces, all based on canonical equations of Hamiltonian types of II-
geodesic curves in the present author’s sense. (IV) is a detailed
exposition of the n-dimensional case of Art. 4 of [1.

I. (Doubly) Extended af[ine geometry based on canonical
equations of Hamiltonian types of II.geodesic curves. 1.1. A
new method of treatment of II-geodesic curves based on canonical
equations of Hamiltonian types. Consider

()
def

(I.1) w-(o(x, , ..., x )dx, (, /, ...-1, 2, ..., n),
which is global in the differentiable manifold M= [J U of class

C(-positive integer or or co), where the open subset U is the
domain of the local coordinates (x), since (I.1) is written in an
invariant form.

Let xX=xX(t) be a parametrized curve, where t is the canonical
parameter ([14_, Art. 12; [15, Art. 14). Set

()

(I.2) dw(x, , ..., x )dt,

(I.3) L- w,(x, c, ..., x )-p,(t, (q’= x’).
Then the Lagrangian equations for the extremal problem
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(I.4)

become
(I.5)

Set

(.6)

ILdt-O
3L/3x--d(3L/32,-d(3L/3)/dt +...

+ (-1)-d-(3L/3x,)/dt-)/dt O.

defp=3L/OO-.d(Oi/O)/dt+... + (-- 1)-d-(OL/Oq)/dt-,
for (I.3) anew, then (I.5) and (I.3) gives

(I.7) =3L/3q, q-3L/3p,
forming Lagrangian canonical equations, and we have

L-p+p--$3tO+pO=q+pO,
(I.8) L--(p)+($q--p)

and consequently for
(I.9) Uf(p)-L,

we have
(1.10) U {(p0) L}-O3p fiq,

whence follows the canonica equations of Hamiltonian types
(I.11) dq/dt-H/Op, dpddt----H/Oq, (dH/dt-O).
The curves represented by (I.6), (I.7) or by (I.11) will be called

()

the II-geodesic curves corresponding to (x, , ..., x), which are
extremals of (I.4).

Take n constants a’, (-1, 2,..., n) not all equal to 0 and set
L aL,

O)
def

()

(1.14) w(x, , ..., x )% aw(x, 2, ..., x ),
(I.15) H aH-(ap,O)-L-(pO)-L,
(I.16) H-{(pO’)--L}=p-q,
(I.17) dq’/dt 3H/p, (l" not summed), dp/dt- --3H/3q,
(I.18) Oa, d-w-ad aw.

The (I.17) as well as
(M)

[p-- 3L/3O--d(L/)/dt +... + (-- 1)-d-(3L/q)/dt-:
(I.19) [$_3L/3q,, O,_L/3p, (cf. (I.6), (I.7))

are other systems of canonical equations of the II-geodesic curves.
p, $, L, and H are components of p, $, L, and H respectively.
The II-geodesic curves in the present author’s sense coincide with
the previous ones in [4 as will be shown as follows. From (I.8),
we obtain

(I.20) dL=d(pO)
and from (I.9)"

(I.21) dL=g(p,)--gH,

(I.12)
so that

(I.13)
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so that we have
(I.22) dH/dt-O.
From (I.2), we obtain

(I.23) d.- Ldt aLdt pdq,
so that

(I.24)- ipdq,- pq’- Iq’dp pq_ IdpIdq- pq- I i(dpdq),
the condition for that the repeated integral may be converted into
the double integral, i.e., that the integrand is continuous, being
evidently satisfied. Now

(I.25) d/dt= (dp/dt)(dq/dt)/ p(dq/dt).
Since both terms on the right-hand side are written in invariant forms,
if we take a transformation ’-’(q) such that d/dV=O, from
(I.25), we must have

(I.26) dpd=-O,
in which case (I.24) becomes of the form

-P+Po, (P0 const.).
Writing h, , , and a for /, , , and p respectively, we obtain the
formulas of (doubly) extended afine transformation of the present
author (4, (2.6), p. 872; _3, (3.2), p. 63)"-a(, , ..., )+ a0, (I a() I0)(I.27)
accompanied by

(I.2S)
(M)

d-a($, , ..., )d,
(I.29) da(, , ..., )d=O, (cf. (I.26)),

along the II-geodesic line-elements.
From (I.27) and (I.28), we obtain the necessary condition

(I.30) da(, , ..., )-0
for the II-geodesic line-elements.

The and the will be called the II-geodesic parallel coordinates.
Setting

(I.31) ds d- Ldt,
from (I.23), we obtain

(I.32) --a(s-so), d-Ldt-ads.
Since d-ds, d-ads, from (I.28), we see that a undergo

the transformation
(M)

(I.33) as- a($, , ..., )a-a(, a, 0, ..., 0)a,
where * are const, on summation with respect to h.

The (I.32) shows us that the II-geodesic curves behave as for
meet and join like straight lines. The s may be called the a2ne
length.
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1.2. (Doubly) Extended aigine geometry. That the totality of
the (doubly) extended ane transformations (I.27) forms a group may
be shown by utilizing (I.30) quite as in p.64 of [3. This group
will be called the (doubly) extended ane group and the geometry
under it the (doubly) extended affine geometry.

1.3. The relation of the present method with that of
Since

()

(I.34) o)- ao) p(x, , ..., x )dx,
we can show by straight forward calculation the identity:

()

(I.35) d/ds-d(w/ds)/ds-- p(x, , ..., x ){dx/ds
/A(x, 2, x )(dx/ds)(dx/ds)},

where the parameter A, of teleparallelism for p(x, 2, ..., x)are
defined by

(I.36) dp/ds-- A,p[(dx/ds) O, dp/ds-t- Ap{(dx/ds)- O,
the p being defined by

(I.37) PP-- ==} PlP--i
for p, the ’s being Kronecker deltas.

Thus the present method is equivalent to that of 4.
1.4. Another procedure. Since we have (I.32), if we start with

in place of x, (I.34) becomes
(1.38) co=ao)=p(, a, 0, ..., 0)d

and thus our theory reduces to that of (simply) extended geometry
but for that n arbitrary parameters (a) appear in addition.

II. (Doubly) Extended Euclidean geometry based on

canonical equations of Hamilton[an types ot II.geodesic curves.

II.1. (Doubly) Extended Euclidean geometry based on canonical
equations of Hamiltonian types of II-geodesic curves. When the
fundamental quadratic form of the (doubly) extended Euclidean
geometry is

(II.1) ds= g(x, c, ..., x )dxdx,
it is always expressible in the form

(II.2) ds= o)w,
where

(M)

(II.3) w-w(x, 2, ..., x )dx,
but for undergoing (doubly) extended orthogonal transformations.

If we adopt (II.2) for (I.1), the results of I holds still and (I.13)
gives

(II.4) w=ww=ds=(aa)w,
so that the condition

(II.5) aa=l
accompanies and (I.12) and (I,15) give
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(II.6) H"=HZH, (II.7) L:=LL, dL=dLdL.
The (I.31) and the (I.32) show us that

(II.8) ds=Ldt=LLdt=dd=-ww,
(II.9) w=d=Ldt=ads, (aa= 1),
(II.10) d=o):=ds.

The (doubly) extended affine group becomes in this case the (doubly)
extended Euclidean group and the (doubly) extended affine geometry
the (doubly) extended Eclidean geometry 4. The (II.3) shows us
further that

(II.11) g
In this way, we see that the present method leads us to the

(doubly) extended Euclidean geometry.
II.2. Another procedure. If we take the view-point of 1.4, our

theory reduces to that of (simply) extended Euclidean geometry but
for that n arbitrary parameters (a), (aaZ=l) appear in addition.

IIIo Other (Doubly) extended geometries based on canonical
equations of Hamiltonian types of II.geodesic curves. III.l.
Other (Doubly) extended gaometries based on canonical equations of
Hamiltonian types of II-geodesic curves. All other (doubly) extended
geometries corresponding to the branches enlisted on p. 247 of ,14
may be treated similarly (Mutatis mutandis) by means o.f canonical
equations of Hamiltonian types of II-geodesic curves.

IV. Geometry of Finsler.Craig.Synge.Kawaguchi space
based on canonical equations of Hamiltonian types of II.geodesic
curves. IV.1. Finsler-Craig-Synge-Kawaguchi spaces. These
spaces are based on a certain integral

()

(IV.l) s- tF(x, x’, ..., x )dr, (x’-dx/dt, etc.)
0

satisfying the so-called Zermero’s eonditions (el. [13). The Kawaguchi
space is reducible to the Finser space haing n transformation
parameters (a) in addition by transforming the coordinates (xx) to
II-geodesic rectangular coordinates () of the present author in the
base differentiable manifold (cf. (I.4)), so that dxX/ds:=a. Now for
the Finsler space corresponding to

(IV.2) ds= F(x, )(ds/dt)(dt),
where F is of degree one in .---dx/ds, we have

(IV.3) ds=g(x, )xdx, (IV.4) g(x, )=(F(x, )/).
The (IV.3) is always reducible to the form

(IV.5) ds--wwz, (w= w(x, 2)dx)
but for undergoing (doubly) extended orthogonal transformations.

If we take (IV.5) for (II.8), our theory of II gives a geometry
of the Finsler-Craig-Synge-Kawaguchi spaces.

IV.2. Another procedure. Another procedure is to adopt the
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metric tensor ([13], p. 724, *g.)"

(IV.6) g(x, c, ..., x )-MFF()F()+,+
(M)

(F=F(x, , ..., x )).
The ds is always expressible in the form (IV.5)and thus our theory
of III applies to the case of Finsler-Craig-Synge-Kawaguchi spaces.
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