157. On J-Groups of Spaces which are Like Projective Planes

By Seiya Sasao
Department of Mathematics, Tokyo Woman's Christian College, Tokyo

(Comm. by Zyoiti Suetuna, m.J.A., Sept. 12, 1966)
Let K be a $C W$-complex obtained from attaching a $2 n$-cell $V^{2 n}$ to the n-sphere S^{n} by a map $f: S^{2 n-1} \rightarrow S^{n}$. We call K a space which is like real, complex, quaternian, Cayley projective plane in accordance with $n=1,2,4,8$. Our purpose is to calculate J-groups of $K^{(*)}$. Since J-group of a space is determined by its homotopy type we shall use the following notations:

$$
\begin{array}{lll}
P_{R}(m)=S^{1} f^{f} e^{2}, & (f) \in \pi_{1}\left(S^{1}\right)=Z[\iota], & (f)=m[\iota] \\
P_{\sigma}(m)=S^{2} f^{f} e^{4}, & (f) \in \pi_{3}\left(S^{2}\right)=Z[h], & (f)=m[h] \\
P_{Q}(m, n)=S^{4} f^{f} e^{8}, & (f) \in \pi_{7}\left(S^{4}\right)=Z[\nu]+Z_{12}[\tau], & (f)=m[\nu]+n[\tau] \\
P_{K}(m, n)=S^{8} f^{16},(f) \in \pi_{15}\left(S^{8}\right)=Z[\sigma]+Z_{120}[\rho], & (f)=m[\sigma]+n[\rho]
\end{array}
$$

where $[\iota],[h],[\nu],[\tau],[\sigma],[\rho]$ are the generators of respective homotopy groups and $\left[\iota_{,} \iota_{8}\right]=2[h]+[\tau],\left[\iota_{8}, \iota_{8}\right]=2[\sigma]+\rho$.

For example $P_{R}(2), P_{\sigma}(1), P_{Q}(1,0), P_{K}(1,0)$ have respectively the same homotopy type as real, complex, quaternion, Cayley projective planes. Now let $\widetilde{K O}(X)$ denote the abelian group formed by all stable real vecter bundles over X. Then there exists the natural onto-homomorphism $J: \widetilde{K O}(X) \rightarrow J(X)$ by the definition of $J(X)$. Hence in order to determine $J(X)$ it is sufficient to calculate $\widetilde{K O}(X)$ and the kernel of J.

1. Case of $P_{R}(m)$. If m is odd we have $\widetilde{K O}\left(P_{R}(m)\right)$ is trivial and therefore $J\left(P_{R}(m)\right.$) is also trivial. If m is even we have $J^{-1}(0)=0$ by the following

Lemma 1. The commutative diagram is exact:

(*) J. F. Adames: On the group $J(X)-1$, Topology, Vol. 2 (1963).
where p denotes the map: $S^{n} \smile e^{2 n} \rightarrow S^{2 n}$ which pinchs S^{n} to a point. On the other hand we can obtain

Lemma 2. $\widetilde{K O}\left(P_{R}(m)\right)=Z_{2}+Z_{2} \quad$ if $m \equiv 0 \quad \bmod 4$,

$$
=Z_{4} \quad \text { if } m \equiv 2 \quad \bmod 4
$$

The proof of Lemmas 1 and 2 is easy. Thus we have
Proposition 1. $J\left(P_{R}(m)\right)=0$ if $m \equiv 1 \bmod 2$,

$$
=Z_{2}+Z_{2} \quad \text { if } m \equiv 0 \quad \bmod 4,
$$

$$
=Z_{4} \quad \text { if } m \equiv 2 \bmod 4
$$

2. Case of $P_{\sigma}(m)$. By calculation of the kernel of p^{*} we have

Lemma 3. The following sequences are exact:

$$
\begin{array}{lll}
0 \rightarrow J\left(S^{4}\right) \rightarrow J\left(P_{\sigma}((m)) \rightarrow J\left(S^{2}\right) \rightarrow 0\right. & \text { if } m \equiv 0 & \bmod 2, \\
0 \rightarrow 2 J\left(S^{4}\right) \rightarrow J\left(P_{o}(m)\right) \rightarrow J\left(S^{2}\right) \rightarrow 0 & \text { if } m \equiv 1 & \bmod 2 .
\end{array}
$$

Since it is easy to obtain
Lemma 4. $\widetilde{K O}\left(P_{\sigma}(m)\right)=Z+Z_{2} \quad$ if $m \equiv 0 \quad \bmod 2$,

$$
=Z \quad \text { if } m \equiv 1 \quad \bmod 2 .
$$

We have therefore
Proposition 2. $J\left(P_{\sigma}(m)\right)=Z_{2}+Z_{24}$ if $m \equiv 0 \quad \bmod 2$,

$$
=Z_{24} \quad \text { if } m \equiv 1 \quad \bmod 2 .
$$

3. Case of $P_{Q}(m, n)$ and $P_{K}(m, n)$. We start from

Lemma 5. The following sequence is exact:

$$
0 \rightarrow J\left(S^{2 l}\right) \rightarrow J(X) \rightarrow J\left(S^{l}\right) \rightarrow 0,
$$

where X denotes $P_{Q}(m, n)$ or $P_{K}(m, n)$ in accordance with $l=4$ or 8 .
In the case of $l=4$ this lemma is easy but it seems to need some device in the case of $l=8$ in proving the exactness of a partial sequence $J\left(S^{16}\right) \rightarrow J(X) \rightarrow J\left(S^{8}\right)$. Now let K be a $C W$-complex obtained from attaching a 41-cell $V^{4 l}$ to a $C W$-complex L and let P be the map: $K \rightarrow S^{4 l}$ which pinches L to a point. Suppose that

1) $J\left(S^{4 l}\right) \underset{P^{*}}{\longrightarrow} J(K) \xrightarrow[i^{*}]{\longrightarrow} J(L)$ is exact where i is the inclusion map: $L \rightarrow K$;
2) the order of $J\left(S^{4 l}\right)$ is the denominater of the rational number $B_{l} / 4 l$ expressed as a fraction in lowest term;
3) L is torsion free.

Then we have
Lemma 6. for $\xi \in \widetilde{K O}(K), J(\xi)=0$ if and only if $i^{*}(\xi)=0$ and $\widehat{A}(\xi)=1+\operatorname{ch}_{2}(x)+c h_{2}(x)+\cdots$ for some $x \in \widetilde{K O}(K)$ where \hat{A} denotes $\hat{A}-$ genus and $c h_{2 k}(x)$ denotes k-th Chern character of x.

On the other hand it is trivial that a stable real vecter bundle over $P_{Q}(m, n)$ and $P_{K}(m, n)$ is determined by Pontrjagin classes. With respect to theses Pontrjagin classes we can have:

Lemma 7. For $\xi \in \widetilde{K O}\left(P_{\ell}(m, n)\right)$ there exist two integers a, b such that

$$
P_{1}(\xi)=2 a e^{4}, \quad P_{2}(\xi)=(a(2 a-1) m+2 n a+6 b) e^{8},
$$

and also converse is true.
Lemma 8. For $\eta \in \widetilde{K O}\left(P_{K}(m, n)\right)$ there exist two integers c, d such that

$$
P_{2}(\eta)=6 c e^{8}, \quad P_{4}(\eta)=(18 c(c-1) m+39 c m-42 c n+7!d) e^{16} .
$$

By combining with Lemmas 6, 7, and 8 we have
Proposition 3. Let (A, B) denotes the greatest common divisor of A and B. Then

$$
\begin{aligned}
& J\left(P_{Q}(m, n)\right)=Z_{140 /(m-2 n, 80)}+Z_{4(m-2 n, 60)}, \\
& J\left(P_{K}(m, n)\right)=Z_{111200 /(m-2 n, 80)}+Z_{(m-2 n, 80)} .
\end{aligned}
$$

Let $P_{R}(2), P_{\sigma}(2), P_{Q}(2), P_{K}(2)$ denote real, complex, quaternion, Cayley projective planes respectively. Then we have the

Corollary. $J\left(P_{R}(2)\right)=Z_{4}, J\left(P_{\sigma}(2)\right)=Z_{24}, J\left(P_{Q}(2)\right)=Z_{140}+Z_{4}$, $J\left(P_{K}(2)\right)=Z_{115200}$.

