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In this paper, we shall continue our discussion on Boolean
multiplicative closures. The object of this paper is to prove main
theorems by using the results of 2.

3. Boolean multiplicative closures. We recall that the
elements x, y e L are said to be orthogonal if Ay-0.

3.1. Lemma. If f7 fulfills conditions CO), C1), and C5), and
if x, y are othogonal elements of L such $ha$ x/hy-keI(f7), $hen

e I(l7) and y e I().
Proof. By CO), C5), and the orthogonality of and y we have:
( 1 ) O-V(x/y)-VxAy.

From (1) and C1) we have:
(2) yAVx_VyAVx-O.

Furthermore, as x_< xVy- k e I(V), and recalling that C5) implies
C3), we have"

3
Using (2), (3), C3) and the fact that L is distributive, we get:

x-xAk-P’xA (x Vy)-(xA x) V(xAy)-xVO-x,
i.e., x e I(V). Interchanging x and y we have y e I(V). Q.E.D.

Using the non-distributive lattice with five elements shown in
([2, figure 1, d, page 6) we can see that the distributive condition
on L may not be omitted, in general, from 3.1.

We denote by B= B(L) the Boolean algebra of all complemented
elements of L. If b e B, -b denotes the complement of b.

An immediate consequence of 3.1 is:
3.2. Theorem. Let V be as in 3.1. Then BI(V).
A Boolean multiplicative closure operator defined on L is an

operator /7 defined on L such that /7 e Corn (L) and Iq7)cB(L).
We are going to characterize the class of all distributive

lattices with zero and unit that admits a Boolean multiplicative
closure operator.

First of all, we note that according to 3.2., the conditions
/7 e Com(L) and I(V) B(L) imply that I(V)- V(L)- B(L). So, if
there exists a Boolean multiplicative closure operator /7 on L it is
unique, and moreover, as B(L) is a sublattice of L, V eCoam(L)
(see 1.1.). Therefore, to solve our problem we must reformulate
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the results of 2 for the case K-I()-B.
With the aid of the well known theorem on the equivalency

between the notions of prime and maximal ideals in Boolean algebras,
together with the results on S-prime and S-maximal ideals at the
beginning of 2, we can prove:

3.3. Lemma. An ideal I of L is B-prime if and only if i
is B-maximal (B- B(L)).

From the above remarks, 2.6. and 3.3. it follows that:
3.4. Theorem. Le if and only if B=B(L) is lower

relatively complete in L and every B-maximal ideal is a prime
ideal of L. In this case, the Boolean multiplicative closure
operator g defined on L is unique, and V (L)-B.

We are going to give an intrinsic characterization of B-maximal
filters.

3.5. Lemma. If a B-maximal ideal M is a prime ideal of
L, then M is a minimal prime ideal.

Proof. Let F denote the complementary set of M (with respect
to L). As M is a prime ideal of L, Fis a filter. We shall prove
that F is a maximal filter. Assume that F is a filter of L such
that FcF and F:/: F. Hence, there exists an element x satisfying"

(1) xeF and (2) xeF.
But (2) is equivalent to x e M and as M is a B-ideal, there exists
an element b such that:

3 b e M-MB and 4 x_b.
From (3) we have"

5 ) -b e M and then 6 ) -b e FcF.
By (4) we have:

(7) xA-b_bA-b-O
and from (1), (6), and (7) we get that 0 e F, i.e., F-L, and we have
proved that L is a maximal filter, so M is a minimal prime ideal.

Q.E.D.
2.9 together with 3.5 provides us a proof of:
3.6. Theorem. If L e , then M is a B-maximal ideal if

and only if M is a minimal prime ideal of L.
4. Remarks on multiplicative closures. Let S be an inf-

semilattice (i.e. S is a partially ordered set that for any pair x, y e S
there exists xAy e S), with unit 1. Obviously, we can define the
class Cm(S) as in the case of lattices, and the inf-semilattices are
the most general structure that admits such definition.

An element i e S, i :/: 1, is called subirreducible if for any pair
x, yeS, xAy_<i implies that x<_i or y_<i. We shall say that S
has the subdecomposition property in case every element of S
different from 1 is a meet of subirreducible elements.
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If K is a subsemilattice of S, an element k eK is called K-
subirreducible if it is subirreducible in the semilattice K. We shall
say that K is subcompa$ible if every K-subirreducible element is
subirreducible in S, and we shall denote by Rc(S) the set of lower
relatively complete and subcompatible subsemilattices of S.

It is easy to prove the following:
4.1. Theorem. If e Cm(S), then I(g) e Rc(S).
We can construct examples that show that the condition

Rc(S) is not sufficient in order that t7 e Cm(S). Nevertheless, with
arguments similars to those used in the proof of 2.6., we can prove:

4.2. Theorem. If K e Rc(S)and K has the subdecomposi-
tion property, then the operator defined by (1) of 1.1 belongs
to am(s).
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