244. Representations of Linear Continuous Functionals on the Space C(X, Y) of Continuous Functions from Compact X into Locally Convex Y^{*}

By Witold M. BOGDANOWICZ

The Catholic University of America, Washington, D. C., U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1966)

Let R be the space of reals and Y, Z, W be real Banach spaces. Denote by U the space of all bilinear continuous operators u from the space $Y \times Z$ into W. Norms of elements in the spaces Y, Y', Z, W, U will be denoted by $| \cdot |$.

A nonempty family of sets V of an abstract space X is called a prering if the following conditions are satisfied: (a) if $A_1, A_2 \in V$, then $A_1 \cap A_2 \in V$, (b) if $A_1, A_2 \in V$, then there exist disjoint sets $B_1, \dots, B_k \in V$ such that $A_1 \setminus A_2 = B_1 \cup \dots \cup B_k$. A function μ from a prering V into a Banach space Z is called a volume if it satisfies the following condition: for every countable family of disjoint sets $A_t \in V(t \in T)$ such that (c) $A = \bigcup_T A_t \in V$, we have $\mu(A) = \sum_T \mu(A_t)$, where the last sum is convergent absolutely and $|\mu|(A) = \sup \{\sum |\mu(A_t)|\}$ $< \infty$ for any $A \in V$, where the supremum is taken over all possible decompositions of the set A into the form (c).

A volume is called positive if it takes on only nonnegative values. If μ is a volume, then its variation $|\mu|$ is a positive volume.

The triple (X, V, v), where v is a fixed positive volume will be called a volume space.

In [1] has been developed the theory of the integral of the form $\int u(f, d\mu)$ defined for $f \in L(|\mu|, Y)$ and $u \in U$, and the theory of the space $L(|\mu|, Y)$ of Lebesgue-Bochner summable functions. For the case of locally compact Hausdorff spaces this integral essentially generates the same operator on the space of summable functions as the integral developed in a different way by Bourbaki [4], Ch. VI, p. 48-49.

The main advantage of the construction of the Lebesgue-Bochner-Stieltjes integration presented in [1] is that one may integrate with respect to any volume μ defined on a prering V without extending it first to a measure.

In this paper by the integral $\int u(f, d\mu)$ we shall understand the integral developed in [1] considered on the space $L(|\mu|, Y)$.

^{*)} This research was supported by NSF grant GP 2565.

The rest of the terminology and notation is the same as in [2] where has been presented an approach to the theory of integration generated by positive linear functionals defined on the space C_0 of real-valued continuous functions with compact support defined on a locally compact space X.

§1. Linear continuous functionals on the space C(X, Y) for compact X and a Banach space Y. Let X be a compact Hausdorff space and Y be a Banach space.

Let C(X, Y) denote the Banach space of all continuous functions on X to Y. The norm in this space is defined as usual.

Let M(V, Y) denote the space of all volumes μ on V to Y such that their variation $|\mu|$ is regular on the prering V. The space M(V, Y) is linear.

If V is the Baire prering, then, according to Th. 5, §4 [13] (cf. also [11]), every positive volume on V is regular and therefore the variation $|\mu|$ of any volume μ is also regular.

The norm in the space M(V, Y) is defined by $|| \mu || = | \mu |(X)$. In the following theorem u denotes the operator u(y, y') = y'(y) for $y \in Y, y' \in Y'$.

Theorem 1. (cf. [2], [8]) Let X be a compact Hausdorff space and V its Baire prering. Let C = C(X, Y) and M = M(V, Y'). To every linear continuous functional h on the space C corresponds a unique volume $\mu \in M$ such that $h(f) = \int u(f, d\mu)$ for all $f \in C$. This correspondence establishes an isomorphism and isometry of the space C' and M.

The proof makes use of the results of [2] and some simple properties of the Baire prering.

§ 2. Extensions of vector-valued volumes from the Baire prering onto the Borel ring. Let B be the Borel ring and V be the Baire prering of X. Consider the mapping $\overline{\mu} = T\mu$ of the space M(B, Y') into the space M(V, Y') defined by the formula $\overline{\mu}(A) = \mu(A)$ for $A \in V$.

Theorem 2. The mapping T establishes an isometry and isomorphism between the spaces M(B, Y') and M(V, Y'). If $\overline{\mu} = T\mu$ then $|\overline{\mu}| \subset |\mu|$, where $|\mu|$ denotes the variation of μ .

Let N(v, Y) denote the set of all functions f from X into Y equal to zero v-almost everywhere.

Denote by $L_{\nu}(Y)$ the quotient space L(v, Y)/N(v, Y). For an element $f \in L_{\nu}(Y)$ define $\int u(f, d\mu) = \int u(g, d\mu)$ and $||f||_{\nu} = ||g||_{\nu}$, where the function g belongs to the class f and $v = |\mu|$.

Notice that this definition is correct, that is it does not depend on the choice of the representative $g \in f$.

1123

W. M. BOGDANOWICZ

Assume that $\overline{\mu} = T\mu$, $\mu \in M(B, Y')$. Put $v = |\mu|$ and $w = |\overline{\mu}|$. Let *i* denote a mapping of the space $L_{\nu}(Y)$ into the space $L_{w}(Y)$ defined as follows: for any two classes $f \in L_{\nu}(Y)$ and $g \in L_{w}(Y)$ we have f = i(g) if and only if the classes f, g have at least one common element. Using the fact that in every class there exists a representative belonging to the second Baire class $C_{2}(Y)$ it is easy to prove that this mapping is well defined. For more details see [2].

Theorem 3. The mapping i establishes an isometric isomorphism of the space $L_{\nu}(Y)$ with the space $L_{W}(Y)$ preserving the integral, that is the map i is linear and onto, $||f||_{\nu} = ||if||_{w}$ and $\int u(f, d\mu) = \int u(if, d\overline{\mu})$ for all $f \in L_{\nu}(Y)$. (Cf. Th. 4, [2]). Using Theorems 2 and 3 we easily get Singer's theorem [10]

Using Theorems 2 and 3 we easily get Singer's theorem [10] (Cf. also [7]):

Theorem 4. To every linear continuous functional h on the space C = C(X, Y) corresponds a unique vector measure $\mu \in M = M$ (B, Y') such that

$$h(f) = \int u(f, d\mu) \text{ for all } f \in C.$$

This correspondence establishes an isometry and isomorphism between the spaces C' and M.

§3. Weak convergence in the space C(X, Y). Let the Banach space Y be such that for every $\mu \in M(V, Y')$ there exists a function g weakly summable on every set $A \in V$ and such that $\mu(A) = \int_{A} gd |\mu|$ for $A \in V$, where $g(x) \in Y'$ and $|g(x)| \le 1 |\mu|$ -almost everywhere.

The space Y satisfies the above conditions, for example, if either one of the spaces Y or Y' is separable [5], [6] or if the space Y is reflexive [9].

Theorem 5. Let $f, f_n \in C = C(X, Y)$. Then the sequence f_n converges weakly to the function f in the space C if and only if the sequence is bounded and $y'f_n(x)$ converges to y'f(x) for all $y' \in Y'$ and $x \in X$.

The proof makes use of the following:

Lemma 1. If fixed μ , g satisfy the above condition and u is any bilinear continuous functional on $Y \times Y'$ then for every $f \in$ $L(|\mu|, Y)$ the function u(f, g) belongs to $L(|\mu|, R)$ and $\int u(f, d\mu)$ $= \int u(f, g)d |\mu|.$

§ 4. Weak convergence of functionals on the space C(X, Y).

Theorem 6. Let h, h_n be linear continuous functionals on C = C(X, Y) and $\mu, \mu_n \in M(V, Y')$ corresponding volumes generated by them. The sequence $h_n(f)$ converges to the value h(f) for every

 $f \in C$ if and only if the sequence μ_n is bounded and $\int f d\mu_n(\cdot, y) \rightarrow \int f d\mu(\cdot, y)$ for every $f \in C(X, R)$ and $y \in Y$.

This theorem follows immediately from the fact that the functions of the form $f=f_1y_1+\cdots+f_ny_n$, $f_1 \in C(X, R)$, $y_i \in Y$ lie densely in the space C(X, Y).

Theorem 7. Let $\mu, \mu_n \in M(V, Z)$ and $u \in U$. If $|| \mu_n || \le c$ for $n=1, 2, \cdots$ and $\mu_n(A) \rightarrow \mu(A)$ for all $A \in V$ then $|| \mu || \le c$, and

$$\int u(f, d\mu_n) \rightarrow \int u(f, \mu)$$

for all $f \in C(X, Y)$.

The following corollary follows immediately from Theorems 6 and 7.

Corollary 1. If $\mu, \mu_n \in M(V, Y')$ are such that $\mu_n(A, y) \rightarrow \mu(A, y)$ for all $A \in V$ and $y \in Y$ then the corresponding functionals $h_n(f)$ converge to the value h(f) for every $f \in C(X, Y)$.

§5. Integration of locally-convex—space-valued functions with respect to some vector measures. Let Y be a locally convex space (not necessarily complete or Hausdorff) and let P denote the family of all continuous seminorms on it. If $p \in P$ then the set $N_p = \{y \in Y: p(y) = 0\}$ is linear. Consider the quotient space Y/N_p with the norm defined by the formula $||y + N_p||_p = p(y)$. Denote the completion of the space Y by Y_p .

Let T_p be the natural mapping of the space Y into the space Y_p . We have $||T_py||_p = p(y)$ for all $y \in Y$. Let T'_p be the conjugate mapping of the space Y'_p into the space Y'. That is we have

$$u(y, T_p'z) = u_p(T_py, z)$$

for all $y \in Y$, $z \in Y'_p$, where u(y, y') = y'(y) for all $y' \in Y'$, $y \in Y$, and $u_p(y, y') = y'(y)$ for all $y' \in Y'_p$, $y \in Y_p$.

Let X be as before, a compact Hausdorff space. Denote by C(X, Y) = C the space of all continuous functions f from the set X into Y. In this space we introduce locally convex topology by means of the seminorms

 $p(f) = \sup \{ p(f(x)) \colon x \in X \}, p \in P.$

Let V be the Baire prering of the space X. Consider the set of all measures of the form $\mu = T'_p \circ \mu_p$, that is $\mu(A) = T'_p(\mu_p(A))$ for all $A \in V$, where $\mu_p \in M(V, Y'_p)$. This set will be denoted by M_p . Put $M = U_{p \in P} M_p$.

Now take any $\mu \in M$. There exists a seminorm $p \in P$ such that $\mu \in M_p$. That is we have $\mu = T'_p \circ \mu_p$, $\mu_p \in M(V, Y'_p)$. Take any $f \in C$ and define

$$\int u(f, d\mu) = \int u_p(T_p \circ f, d\mu_p).$$

W. M. BOGDANOWICZ

Theorem 8. (1) The operator $\int u(f, d\mu)$ is well defined and represents a bilinear functional on the space $C \times M$. (2) If $f, f_n \in C$ and $f_n \rightarrow f$ in the topology of C then

$$\int u(f_n, d\mu) \rightarrow \int u(f, d\mu)$$
 for every $\mu \in M$.

§ 6. Representations of linear continuous functionals on the space C(X, Y) for compact Hausdorff X and locally convex Y. Let X, Y, C, M be as before.

Theorem 9. (1) To every linear continuous functional h on the space C = C(X, Y) corresponds a unique vector valued measure $\mu \in M = U_p M_p(p \in P)$, where $M_p = T'_p \circ M(V, Y'_p)$, such that h(f) $= \int u(f, d\mu)$ for all $f \in C$, and conversely. (2) If $|h(f)| \le cp(f)$ for all $f \in C$ then the corresponding measure μ is of the form μ $= T'_p \circ \mu_p, \mu_p \in M(V, Y'_p)$, and the least constant c satisfying the above inequality can be found by the formula

 $c_{p} = ||\mu_{p}|| = sup |\sum_{k} u(y_{k}, \mu(A_{k}))|,$

where the supremum is taken over all finite systems of disjoint sets $A_k \in V$ and all $y_k \in Y$ such that $p(y_k) \leq 1$.

The above result represents a generalization of one of the results of Swong [12] who has found a similar representation by means of a Riemann-Stieltjes type integral for the case when Y is a complete locally convex Hausdorff space. He has proven that one may use to represent the functionals the measures of the form $\mu = T'_p \circ \mu_p$, where μ_p are weakly regular with finite semivariation defined on the Borel ring.

These results will appear in Mathematische Annalen.

References

- [1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sc. USA, 53, 492-498 (1965).
- [2] —: Integration on locally compact spaces generated by positive linear functionals and Riesz representation theorem. Proc. Japan Acad. (to appear).
- [3] —: An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure. Math. Annalen, **164**, 251-269 (1966).
- [4] Bourbaki, N.: Integration, Chapt. VI. Actual. Scient. et Ind., No. 1281 (1959).
- [5] Dunford, N., and Pettis, B. J.: Linear operators on summable functions. Trans. Amer. Math. Soc., 47, 323-392 (1940).
- [6] Dieudonné, J.: Sur le theoreme de Lebesgue-Nikodym. V. Canadian J. Math., 3, 129-139 (1951).
- [7] Dinculeanu, N.: Sur la représentation intégrale de certaines opérations linéaires. III. Proc. Amer. Math. Soc., 10, 59-68 (1959).
- [8] Riesz, F.: Sur les operations fonctionelles lineaires. C. R. Acad. Sci. (Paris), 149, 974-977 (1909).

- [9] Phillips, R. S.: On weakly compact subsets of a Banach space. Amer. J. Math., 65, 108-136 (1943).
- [10] Singer, I.: Sur les applications linéaires intégrales des espaces de fonctions continues. I. Revue de Mathématiques Pures et Appliquées, 4, 391-401 (1959).
- [11] Halmos, P. R.: Measure Theory. New York (1950).
- [12] Swong, K.: A representation theory of continuous linear maps. Math. Annalen, 155, 270-291 (1964).
- [13] Bogdanowicz, W. M.: An approach to the theory of integration and to the theory of Lebesgue-Bochner measurable functions on locally compact spaces. Math. Annalen (to appear).