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Let R be. the space of reals and Y, Z, W be real Banach spaces.
Denote by U the space of all bilinear continuous operators u from
the space YZ into W. Norms of elements in the spaces Y, Y’,
Z, W, U will be denoted by I-

A nonempty family of sets V of an abstract space X is called
a prering if the following conditions are satisfied: (a) if A, A e V,
then A A. e V, (b) if A, A e V, then there exist disjoint sets
B,..., B e V such that A\A--B@... B. A function from a
prering V into a Banach space Z is called a volume if it satisfies
the following condition: for every countable family of disjoint sets
A e V(t e T) such that (c) A-= U A e V, we have ,u(A)-,ft(A),
where the last sum is convergent absolutely and t/ ](A) =-sup{ (A)I}
< c for any A e V, where the supremum is taken over all possible
decompositions of the set A into the form (c).

A volume is called positive if it takes on only nonnegative values.
If / is a volume, then its variation I/tl is a positive volume.

The triple (X, V, v), where v is a fixed positive volume will be
called a volume space.

In 1 has been developed the theory of the integral of the form

u(f, dt) defined for Y) and u e U, and the theory off e L(]/ I,
the space L(I/ ], Y) of Lebesgue-Bochner summable functions. For
the case of locally compact Hausdorff spaces this integral essentially
generates the same operator on the space of summable functions as
the integral developed in a different way by Bourbaki [4, Ch. VI, p.
48-49.

The main advantage of the construction of the Lebesgue-Bochner-
Stieltjes integration presented in [1 is that one may integrate with
respect to any volume ,u defined on a prering V without extending
it first to a measure.

In this paper by the integral fu(f, dtt we shall understand the
integral developed in [1 considered on the space L(I/ ], Y).

*) This research was supported by NSF grant GP 2565.
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The rest of the terminology and notation is the same as in [2
where has been presented an approach to the theory of integration
generated by positive linear functionals defined on the space Co of
real-valued continuous functions with compact support defined on a
locally compact space X.

1. Linear continuous functionals on the space C(X, Y)
for compact X and a Banach space Y. Let X be a e0mpaet Haus-
dorf space and Y be a Banach space.

Let C(X, Y) denote the Banach space of all continuous functions
on X to Y. The norm in this space is defined as usual.

Let M( V, Y) denote the space of all volumes / on V to Y such
that their variation I/ is regular on the prerng V. The space
M(V, Y) is linear.

If V is the Baire prering, then, according to Th. 5 4 [13
(cf. also [11), every positive volume on V is regular and therefore
the variation I/1 of any volume / is also regular.

The norm in the space M(V, Y) is defined by II/ll=l/l(X).
In the following theorem u denotes the operator u(y, y’)=y’(y) for
yeY, y’eY’.

Theorem 1. (cf. [2, 8) Let X be a compact Hausdorff space
and V its Baire prering. Let C=C(X, Y) and M=M(V, Y’). To
every linear continuous functional h on the space C corresponds

unique volume [ e M such that h(f)-Iu(f dt) for all f e C.a

This correspondence establishes an isomorphism and isometry of
the space C’ and M.

The proof makes use of the results of [2 and some simple prop-
erties of the Baire prering.

2. Extensions of vector-valued volumes from the Baire
prering onto the Borel ring. Let B be the B0rel ring and V be
the Baire prering of X. Consider the mapping -T/ of the space
M(B, Y’) into the space M(V, Y’) defined by the formula fi(A)=/(A)
for A e V.

Theorem 2. The mapping T establishes an isometry and
isomorphism between the spaces M(B, Y’) and M( V, Y’). If
then fill[], where tl denotes the variation of [.

Let N(v, Y) denote the set of all functions f from X into Y
equal to zero v-almost everywhere.

Denote by L(Y) the quotient space L(v, Y)/N(v, Y). For an

element f e L(Y) define /u(f’ dl)- tu(g’ d[) and II f ll-II g I1, where
the function g belongs to the class f and v= I/ I.

Notice that this definition is correct, that is it does not depend
on the choice of the representative g e f.
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Assume that =TI,IeM(B, Y’). Put v=I/l and w
Let i denote a mapping of the space L(Y) into the space
defined as follows: for any two classes f e L(Y) and g e L(Y) we
have f-i(g) if and only if the classes f, g have at least one common
element. Using the fact that in every class there exists a represent-
ative belonging to the second Baire class C.(Y) it is easy to prove
that this mapping is well defined. For more details see 2.

Theorem 3. The mapping i establishes an isometric isomor-
phism of the space Lv(Y) with the space Lr(Y) preserving the
integral, that is the map i is linear and onto, lfll ]1 if ll and

Iu(f, d[)- Iu(if, dfi) for all f e L(Y). (Cf. Th. 4,
Using Theorems 2 and 3 we easily get Singer’s theorem E10

(Cf. also E7):
Theorem 4o To every linear continuous functional h on the

space C=C(X, Y) corresponds a unique vector measure [ e M=M
(B, Y’) such that

h(f I u(f dt for all f eC.

This correspondence establishes an isometry and isomorphism between
the spaces C’ and M.

3. Weak convergence in the space C(X, Y). Let the Banach
space Y be such that for every / e M(V, Y’) there exists a func-
tion g weakly summable on every set A e V and such that /(A)

gd[ttl for A e V, where g(x) Y’ and Ig(x) l<_l I/ I-almost every-
A

where.
The space Y satisfies the above conditions, for example, if either

one of the spaces Y or Y’ is separable 5, [6 or if the space Y
is reflexive 9.

Theorem 5. Let f, f, e C C(X, Y). Then the sequence f
converges weakly to the function f in the space C if and only if
the sequence is bounded and y’f(x) converges to y’f(x) for all y’ Y’
and xeX.

The proof makes use of the following:
Lemma 1. If fixed [, g satisfy the above condition and u is

any bilinear continuous functional on Y Y’ then for every f e

L(Icf I, Y) the function u(f g) belongs to L(I t I, R) and lu(f, d[)

lu(f, g)dlt I.
4. Weak convergence of functionals on the space C(X, Y).

Theorem 6. Let h,h be linear continuous functionals on
C=C(X, Y) and l, f. e M( V, Y’) corresponding volumes generated
by them. The sequence h(f) converges to the value h(f) for every
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f e C if and only if the sequence l is bounded and I fd[(’, y)--

y) for f e C(X, R) and e Y.d(., every Y
This theorem follows immediately from the fact that the func-

tions of the form f-fiy/ /fy, fi C(X, R), y Y lie densely
in the space C(X, Y).

Theorem 7. Le [,eM(V,Z) and ue U. If tall-c for
n=l, 2,... and lt(A)--I(A) for all A V then II t I1<- c, and

Iu(f dl)-- Iu(f t)

for all f e C(X, Y).
The following corollary follows immediately from Theorems 6

and 7.

Corollar 1. If [, t e M(V, Y’) are such that t(A, y)--
t(A, y) for all A e V and y e Y then the corresponding functionals
h(f) converge to the value h(f) for every f e C(X, Y).

5. Integration of locally.convexspace.valued functions
with respect to some vector measures. Let Y be a locally convex
space (not necessarily complete or Hausdorff) and let P denote the
family of all continuous seminorms on it. If p e P then the set
N={y e Y: p(y)=0} is linear. Consider the quotient space Y/N
with the norm defined by the formula II y+N l=p(y). Denote the
completion of the space Y by Y.

Let T be the natural mapping of the space Y into the space
Y. We have It Ty ll=p(y) for all y e Y. Let T; be the conjugate
mapping of the space Y into the space Y’. That is we have

u(y, Tz)=%(Ty, z)
for all y e Y, z e Y, where u(y, y’)=y’(y) for all y’e Y’, y e Y, and
u(y, y’)=y’(y) for all y’ Y, y Y.

Let X be as before, a compact Hausdorff space. Denote by
C(X, Y)=C the space of all continuous functions f from the set
X into Y. In this space we introduce locally convex topology by
means of the seminorms

p(f) sup {p(f(x)): x e X}, p e P.
Let V be the Baire prering of the space X. Consider the set of

all measures of the form /= T o/, that is /(A)= T(I(A)) for all
A e V, where / e M(V, Y). This set will be denoted by M. Put
M=

Now take any / e M. There exists a seminorm p e P such that
/ e M. That is we have / To/,/ e M(V, Y). Take any f e C
and define

Iu(f dl)- fu,(Tf dl,).
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Theorem 8. (1) The operator u(f, d[) is well defined and

represents a bilinear functional on the space C M. (2) If f, f. e
C and f,--f in the topology of C then

6. Representations of linear continuous functionals on the
space C(X, Y) for compact Hausdorff X and locally convex Y.

Let X, Y, C, M be as before.
Theorem 9. (1) To every linear continuous functional h on

the space C-C(X, Y) corresponds a unique vector valued measure

ft e M= UM(p e P), where M- T o M( V, Y), such that h(f)

tu(f, d[) for all fe C, and conversely. (2) Iflh(f) l<_cp(f) for
all feC then the corresponding measure [ is of the form t
To/,/ e M( V, Y), and the least constant c satisfying the above

inequality can be found by the formula
c-II f II- sup u(y, I(A)) ],

where the supremum is taken over all finite systems of disjoint
sets A V and all y Y such that p(y)_l.

The above result represents a generalization of one of the results
of Swong [12 who has found a similar representation by means of
a Riemann-Stieltjes type integral for the case when Y is a complete
locally convex Hausdorff space. He has proven that one may use to
represent the functionals the measures of the form/-T , where
/ are weakly regular with finite semivariation defined on the Borel
ring.

These results will appear in Mathematische Annalen.

Reerences

Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes
integral and a new approach to the theory of integration. Proc. Nat.
Acad. Sc. USA, 3;3, 492-498 (1965).

--: Integration on locally compact spaces generated by positive linear
functionals and Riesz representation theorem. Proc. Japan Acad. (to appear).

--: An approach to the theory of Lebesgue-Bochner measurable functions
and to the theory of measure. Math. Annalen, 164, 251-269 (1966).

Bourbaki, N.: Integration, Chapt. VI. Actual. Scient. et Ind., No. 1281 (1959).
Dunford, N., and Pettis, B. J.: Linear operators on summable functions.
Trans. Amer. Math. Soc., 47, 323-392 (1940).

Dieudonn6, J.: Sur le theoreme de Lebesgue-Nikodym. V. Canadian J. Math.,
3, 129-139 (1951).

Dinculeanu, N.: Sur la representation intgrale de certaines op6rations
lin6aires. III. Proc. Amer. Math. Soc., 10, 59-68 (1959).

Riesz, F.: Sur les operations fonctionelles lineaires. C.R. Acad. Sci. (Paris),
149, 974-977 (1909).



No. 10 Representations of Linear Continuous Functionals 1127

[10]

[ii]
[12]

[13]

Phillips, R. S." On weakly compact subsets of a Banach space. Amer. J.
Math., 65, 108-136 (1943).

Singer, I.: Sur les applications linaires intgrales des espaces de fonctions
continues. I. Revue de Mathmatiques Pures et Appliquges, 4, 391-401
(1959).

Halmos, P. R.: Measure Theory. New York (1950).
Swong, K.: A representation theory of continuous linear maps. Math. An-

nalen, 155, 270-291 (1964).
Bogdanowicz, W. M." An approach to the theory of integration and to the
theory of Lebesgue-Bochner measurable functions on locally compact spaces.
Math. Annalen (to appear).


