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Let R be the space of reals and Y, Z, W be real Banach spaces.
Denote by U the space of all bilinear continuous operators «# from
the space Yx Z into W. Norms of elements in the spaces Y, Y,
Z, W, U will be denoted by | |.

A nonempty family of sets V of an abstract space X is called
a prering if the following conditions are satisfied: (a) if A4,, 4,¢ V,
then 4,NA,eV, (b) if A, A,¢V, then there exist disjoint sets
B, ---,B,e V such that A\4,=B,U---UB,. A function ¢ from a
prering V into a Banach space Z is called a volume if it satisfies
the following condition: for every countable family of disjoint sets
A,e V(te T) such that (¢) A=U, A, eV, we have p(A)=>u(A),
where the last sum is convergent absolutely and | ¢ |(4) =sup {3} | £(4,) [}
< oo for any Ae V, where the supremum is taken over all possible
decompositions of the set A into the form (c).

A volume is called positive if it takes on only nonnegative values.
If ¢ is a volume, then its variation | ¢ | is a positive volume.

The triple (X, V, »), where v is a fixed positive volume will be
called a volume space.

In [1] has been developed the theory of the integral of the form

Su(f, dyt) defined for feL(jp],Y) and we U, and the theory of

the space L(|¢|, Y) of Lebesgue-Bochner summable functions. For
the case of locally compact Hausdorff spaces this integral essentially
generates the same operator on the space of summable functions as
the integral developed in a different way by Bourbaki [4], Ch. VI, p.
48-49,

The main advantage of the construction of the Lebesgue-Bochner-
Stieltjes integration presented in [1] is that one may integrate with
respect to any volume p defined on a prering V without extending
it first to a measure.

In this paper by the integral Su( S, dp) we shall understand the
integral developed in [1] considered on the space L(|¢|, Y).
*)  This research was supported by NSF grant GP 2565.
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The rest of the terminology and notation is the same as in [2]
where has been presented an approach to the theory of integration
generated by positive linear functionals defined on the space C, of
real-valued continuous functions with compact support defined on a
locally compact space X.

§1. Linear continuous functionals on the space C(X,Y)
for compact X and a Banach space Y. Let X be a compact Haus-
dorff space and Y be a Banach space.

Let C(X, Y) denote the Banach space of all continuous functions
on X to Y. The norm in this space is defined as usual.

Let M(V, Y) denote the space of all volumes ¢ on V to Y such
that their variation |p| is regular on the prering V. The space
M(V,Y) is linear.

If V is the Baire prering, then, according to Th. 5, §4 [13]
(cf. also [117), every positive volume on V is regular and therefore
the variation || of any volume p is also regular.

The norm in the space M(V,Y) is defined by || z||=]p¢|(X).
In the following theorem w denotes the operator u(y,y’)=w'(y) for
yeY,yeY'.

Theorem 1. (cf. [2], [8]) Let X be a compact Hausdorff space
and V its Baire prering. Let C=C(X,Y) and M=M(V, Y'). To
every linear continuous functional h on the space C corresponds
a unique volume pe M such that h(f)zgu(f, dp) for all feC.
This correspondence establishes an tsomorphism and isometry of
the space C' and M,

The proof makes use of the results of [2] and some simple prop-
erties of the Baire prering.

§ 2. Extensions of vector-valued volumes from the Baire
prering onto the Borel ring. Let B be the Borel ring and V be
the Baire prering of X. Consider the mapping fZ= Ty of the space
M(B, Y') into the space M(V, Y’) defined by the formula #Z(A)= p(A)
for Ae V.

Theorem 2. The mapping T establishes an isometry and
1somorphism between the spaces M(B, Y') and M(V, Y"). If g=Tp
then |fL|C|p|, where || denotes the variation of p.

Let N(v, Y) denote the set of all functions f from X into Y
equal to zero v-almost everywhere,

Denote by L,(Y) the quotient space L(v, Y)/N(v, Y). For an

element f& Ly(Y) define {u(f, du)=u(g, dz) and || ll,= | g I, where

the function g belongs to the class f and v=|p]|.
Notice that this definition is correct, that is it does not depend
on the choice of the representative g e f.
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Assume that g=Tp,pe M(B,Y'). Put v=|p| and w=|g|.
Let ¢ denote a mapping of the space L,(Y) into the space L,(Y)
defined as follows: for any two classes fe L,(Y) and ge L, (Y) we
have f=1i(g) if and only if the classes f, g have at least one common
element., Using the fact that in every class there exists a represent-
ative belonging to the second Baire class C,(Y) it is easy to prove
that this mapping is well defined. For more details see [2].

Theorem 3. The mapping © establishes an isometric isomor-
phism of the space L,(Y) with the space Ly(Y) preserving the
integral, that is the map ¢ is linear and onto, || f|ly = ||¢f |lw and

Su( £, dp)=§u('£f, df) for all feL(Y). (Cf. Th. 4, [2]).

Using Theorems 2 and 3 we easily get Singer’s theorem [10]
(Cf. also [T]):

Theorem 4. To every linear continuous functional h on the

space C=C(X, Y) corresponds a wunique vector measure pe M=M
(B, Y') such that

h(f):Su(f,d;x) for all feC.

This correspondence establishes an isometry and 1somorphism between
the spaces C' and M.

§ 3. Weak convergence in the space C(X, Y). Let the Banach
space Y be such that for every pe M(V, Y’) there exists a func-
tion g weakly summable on every set Ae V and such that p(A)

= Lgd || for Ae V, where g(x)e Y’ and | g(x) |<1 | ¢ |-almost every-
where.

The space Y satisfies the above conditions, for example, if either
one of the spaces Y or Y’ is separable [5], [6] or if the space Y
is reflexive [9].

Theorem 5. Let f,f,eC=C(X,Y). Then the sequence f,
converges weakly to the function f im the space C if and only if
the sequence is bounded and y'f,(x) converges to y'f(x) for all y' € Y’
and xe X.

The proof makes use of the following:

Lemma 1. If fized p, g satisfy the above condition and w ts
any bilinear continuous functional on Y X Y’ then for every fe
L( ¢, Y) the function u(f,g) belongs to L(| |, R) and Su( £, dp)
=fucs, 0 121,

§ 4. Weak convergence of functionals on the space C(X, Y).

Theorem 6. Let h,h, be linear continuwous functionals on
C=CX,Y) and g, p,c M(V, Y') corresponding volumes generated
by them. The sequence h,(f) converges to the value h(f) for every
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feC if and only if the sequence p, is bounded and S fdu (-, y)—
Sfd)u(- ,Y) for every feC(X,R) and ye Y.

This theorem follows immediately from the fact that the func-
tions of the form f=fy,~++++fuha, 1€ C(X, R),y;€ Y lie densely
in the space C(X, Y).

Theorem 7. Let p, p,e M(V,Z) and ue U. If || ¢, ||<c for
n=1,2, .- and p,(A)—p(A) for all AcV then ||p||<c, and

s, dpy—Jucs, 1
for all feC(X,Y).

The following corollary follows immediately from Theorems 6
and 7.

Corollary 1. If p,p,e M(V,Y') are such that p,(A,y)—
HA,y) for all Ac V and ye Y then the corresponding functionals
h,(f) converge to the value h(f) for every feC(X, Y).

§ 5. Integration of locally-convex—space-valued functions
with respect to some vector measures. Let Y be a locally convex
space (not necessarily complete or Hausdorff) and let P denote the
family of all continuous seminorms on it. If pe P then the set
N,={ye Y: p(y)=0} is linear. Consider the quotient space Y/N,
with the norm defined by the formula ||y+N,|,=»(y). Denote the
completion of the space Y by Y,.

Let T, be the natural mapping of the space Y into the space
Y,. We have || T,y |l,=p(y) for all ye Y. Let T} be the conjugate
mapping of the space Y, into the space Y’. That is we have

u(y, Tr2)=u,(T,y, 2)
for all ye Y,ze Y,, where u(y, y')=9'(y) for all y’'e Y',ye Y, and
u,(y, ¥")=y'(y) for all y'e Y;,ye Y,

Let X be as before, a compact Hausdorff space. Denote by
C(X, Y)=C the space of all continuous functions f from the set
X into Y. In this space we introduce locally convex topology by
means of the seminorms

p(f)=sup {p(f(x)): v € X}, pe P.

Let V be the Baire prering of the space X. Consider the set of
all measures of the form p=T, o p,, that is p(4)=T,(«,(A4)) for all
AecV, where p,e M(V, Y]). This set will be denoted by M,. Put
M="U,esM,.

Now take any pre M. There exists a seminorm p e P such that
pe M, That is we have pu=T,op,, t,c M(V, Y;). Take any feC
and define

[, a =T, 1, dps).
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Theorem 8. (1) The operator gu( f,dp) is well defined and

represents a bilinear functional on the space Cx M. (2) If f, f.€
C and f,—f in the topology of C then

Su(fm dp)—»Su(f, dp) for every pe M.

§ 6. Representations of linear continuous functionals on the
space C(X,Y) for compact Hausdorff X and locally convex Y.

Let X, Y, C, M be as before.

Theorem 9. (1) To every linear continuous functional h on
the space C=C(X, Y) corresponds a unique vector valued measure
reM=U,M,(peP), where M,=T,oM(V,Y}), such that h(f)
=Su(f, dy) for all feC, and conversely. (2) If | h(f)|<ep(f) for

all feC then the corresponding measure p is of the form p
=Tyop,, t, € M(V, Y,), and the least constant ¢ satisfying the above
inequality can be found by the formula

Cp= ” #p ” =sup I Zku(yk’ #(Ak)) l,
where the supremum is taken over all finite systems of disjoint
sets A, eV and all y, € Y such that p(y,)<1.

The above result represents a generalization of one of the results
of Swong [12] who has found a similar representation by means of
a Riemann-Stieltjes type integral for the case when Y is a complete
locally convex Hausdorff space. He has proven that one may use to
represent the functionals the measures of the form p=T,0 y,, where
L, are weakly regular with finite semivariation defined on the Borel
ring.

These results will appear in Mathematische Annalen.
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